Improving the performance of inverted organic solar cells by adjusting the concentration of precursor solution of Al-doped ZnO

Xuan Yu , Xiao-ming Yu , Jian-jun Zhang , Hong-jun Pan

Optoelectronics Letters ›› : 329 -332.

PDF
Optoelectronics Letters ›› : 329 -332. DOI: 10.1007/s11801-015-5127-6
Article

Improving the performance of inverted organic solar cells by adjusting the concentration of precursor solution of Al-doped ZnO

Author information +
History +
PDF

Abstract

Al-doped ZnO (AZO) has been used as an electron transport and hole blocking buffer layer in inverted organic solar cells (IOSCs). In this paper, the AZO morphology, optical and structural properties and IOSCs performance are investigated as a function of precursor solution concentration from 0.1 mol/L to 1.0 mol/L. We demonstrate that the device with 0.1 mol/L precursor concentration of AZO buffer layers enhances the short-circuit current and the fill factor of IOSCs simultaneously. The resulting device shows that the power conversion efficiency is improved by 35.6% relative to that of the 1.0 mol/L device, due to the improved surface morphology and transmittance (300–400 nm) of AZO buffer layer.

Keywords

Precursor Solution / Power Conversion Efficiency / Solar Energy Material / Butyric Acid Methyl Ester / Precursor Solution Concentration

Cite this article

Download citation ▾
Xuan Yu, Xiao-ming Yu, Jian-jun Zhang, Hong-jun Pan. Improving the performance of inverted organic solar cells by adjusting the concentration of precursor solution of Al-doped ZnO. Optoelectronics Letters 329-332 DOI:10.1007/s11801-015-5127-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LIUD.-y., QINW.-j., DONGN., ZHANGQ., YANGL.-y., YINS.-g.. Journal of Optoelectronics·Laser, 2014, 25: 1363

[2]

HeZ., ZhongC., SuS., XuM., WuH., CaoY.. Nature Photonics, 2012, 6: 591

[3]

YUX., YUX.-m., HUZ.-y., ZHANGJ.-j., ZHAOG.-s., ZHAOY.. Optoelectronics Letters, 2013, 9: 274

[4]

ZhangQ., KanB., LiuF., LongG., WanX., ChenX., ZuoY., NiW., ZhangH., LiM., HuZ., HuangF., CaoY., LiangZ., ZhangM., ThomasP. R.. Nature Photonics, 2015, 9: 35

[5]

YuX., YuX., ZhangJ., ZhaoY.. Materials Letters, 2014, 130: 75

[6]

ThambiduraiM., KimJ. Y., SongJ., KoY., MuthukumarasamyN., VelauthapillaiD., LeeC.. Solar Energy, 2014, 106: 95

[7]

ChenM. H., KuoY. C., LinH. H., ChaoY. P., WongM. S.. Journal of Power Sources, 2015, 275: 274

[8]

ApriliaA., WulandariP., SuendoV.Herman. Solar Energy Materials & Solar Cells, 2013, 111: 181

[9]

StubhanT., OhH., PinnaL., KrantzJ., LitzovI., BrabecC. J.. Organic Electronics, 2011, 12: 1539

[10]

YuX., YuX., ZhangJ., HuZ., ZhaoG., ZhaoY.. Solar Energy Materials & Solar Cells, 2014, 121: 28

[11]

LeeH. Y., HuangH. L.. Organic Electronics, 2014, 15: 1362

[12]

WolfN., StubhanT., ManaraJ., DyakonovV., BrabecC. J.. Thin Solid Films, 2014, 564: 213

[13]

VerbakelF., MeskersS. C. J., JanssenR. A. J.. Journal of Applied Physics, 2007, 102: 083701

[14]

LiangZ., ZhangQ., WiranwetchayanO., XiJ., YangZ., ParkK., LiC., CaoG.. Advanced Functional Materials, 2012, 22: 2194

[15]

SaleemM., FangL., HuangQ. L., LiD. C., WuF., RuanH. B., KongC. Y.. Surface Review and Letters, 2012, 19: 1250055

[16]

HongR., ShaoJ., HeH., FanZ.. Applied Surface Science, 2006, 252: 2888

[17]

OhyamaM., KouzukaH., YokoT.. Thin solid films, 1997, 306: 78

[18]

OhyamaM., KouzukaH., YokoT.. Journal of the American Ceramic Society, 1998, 81: 1622

[19]

MaW., YangC., GongX., LeeK., HeegerA. J.. Advanced Functional Materials, 2005, 15: 1617

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/