Stable single-photon detection based on Si-avalanche photodiode in a large temperature variation range

Pei-qin Yan , Zhao-hui Li , Ya-fan Shi , Bai-cheng Feng , Bing-cheng Du , Yan-wei Du , Tian-le Tan , Guang Wu

Optoelectronics Letters ›› 2015, Vol. 11 ›› Issue (5) : 321 -324.

PDF
Optoelectronics Letters ›› 2015, Vol. 11 ›› Issue (5) : 321 -324. DOI: 10.1007/s11801-015-5123-x
Article

Stable single-photon detection based on Si-avalanche photodiode in a large temperature variation range

Author information +
History +
PDF

Abstract

In this paper, we present a stable single-photon detection method based on Si-avalanche photodiode (Si-APD) operating in Geiger mode with a large temperature variation range. By accurate temperature sensing and direct current (DC) bias voltage compensation, the single-photon detector can work stably in Geiger mode from −40 °C to 35 °C with an almost constant avalanche gain. It provides a solution for single-photon detection at outdoor operation in all-weather conditions.

Keywords

IEEE Photonic Technology Letter / Dark Noise / Peltier Cooler / Geiger Mode / Avalanche Gain

Cite this article

Download citation ▾
Pei-qin Yan, Zhao-hui Li, Ya-fan Shi, Bai-cheng Feng, Bing-cheng Du, Yan-wei Du, Tian-le Tan, Guang Wu. Stable single-photon detection based on Si-avalanche photodiode in a large temperature variation range. Optoelectronics Letters, 2015, 11(5): 321-324 DOI:10.1007/s11801-015-5123-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiangY., RenM., WuE., WangJ., WuG., ZengH.. IEEE Photonics Technology Letters, 2012, 24: 1852

[2]

ThomasO., YuanZ. L., ShieldsA. J.. Nature Communications, 2012, 3: 644

[3]

LiangY., JianY., ChenX., WuG., WuE., ZengH.. IEEE Photonics Technology Letters, 2011, 23: 115

[4]

NamekataN., AdachiS., InoueS.. IEEE Photonics Technology Letters, 2010, 22: 529

[5]

ThomasO., YuanZ. L., DynesJ. F., SharpeA. W., ShieldsA. J.. Applied Physics Letters, 2010, 97: 031102

[6]

ZhengF., WangC., SunZ., ZhaiG.. Journal of Optoelectronics·Laser, 2014, 25: 1254

[7]

HeB., WangJ., YuB., LiuY., WangX., XiaoL., JiaS.. Journal of Optoelectronics Laser, 2013, 24: 758

[8]

GuX., HuangK., LiY., PanH., WuE., ZengH.. Applied Physics Letters, 2010, 96: 131111

[9]

GuX., HuangK., PanH., WuE., ZengH.. Laser Physics Letters, 2013, 10: 055401

[10]

BaoZ., LiZ., ShiY., WuE., WuG., ZengH.. IEEE Photonics Technology Letters, 2014, 26: 1495

[11]

BaoZ., LiangY., WangZ., LiZ., WuE., WuG., ZengH.. Applied Optics, 2014, 53: 3908

[12]

ZhengD., ChenW., ChenL., LiC.. Journal of Optoelectronics·Laser, 2015, 26: 303

[13]

IshidaH., ShirakawaH., AndohT., AkiguchiS., KobayashiD., UeyamaK., KuraishiY., HachigaT.. Journal of Applied Physics, 2009, 106: 054701

[14]

NiclassC., FaviC., KluterT., GersbachM., CharbonE.. IEEE Journal of Solid-State Circuits, 2008, 43: 2977

[15]

HadfieldR. H.. Nature Photonics, 2009, 3: 696

[16]

ToyoshimaM., TakayamaY., TakahashiT., SuzukiK., KimuraS., TakizawaK., KuriT., KlausW., ToyodaM., KunimoriH.. IEEE A&E Systems Magazine, 2008, 23: 10

[17]

KataokaJ., SatoR., IkagawaT., KotokuJ., KuramotoY., TsubukuY., SaitoT., YatsuY., KawaiN., IshikawaY., KawabataN.. Nuclear Instruments and Methods in Physics Research Section A, 2006, 564: 300

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/