Stable single-photon detection based on Si-avalanche photodiode in a large temperature variation range

Pei-qin Yan, Zhao-hui Li, Ya-fan Shi, Bai-cheng Feng, Bing-cheng Du, Yan-wei Du, Tian-le Tan, Guang Wu

Optoelectronics Letters ›› 2015, Vol. 11 ›› Issue (5) : 321-324.

Optoelectronics Letters ›› 2015, Vol. 11 ›› Issue (5) : 321-324. DOI: 10.1007/s11801-015-5123-x
Article

Stable single-photon detection based on Si-avalanche photodiode in a large temperature variation range

Author information +
History +

Abstract

In this paper, we present a stable single-photon detection method based on Si-avalanche photodiode (Si-APD) operating in Geiger mode with a large temperature variation range. By accurate temperature sensing and direct current (DC) bias voltage compensation, the single-photon detector can work stably in Geiger mode from −40 °C to 35 °C with an almost constant avalanche gain. It provides a solution for single-photon detection at outdoor operation in all-weather conditions.

Keywords

IEEE Photonic Technology Letter / Dark Noise / Peltier Cooler / Geiger Mode / Avalanche Gain

Cite this article

Download citation ▾
Pei-qin Yan, Zhao-hui Li, Ya-fan Shi, Bai-cheng Feng, Bing-cheng Du, Yan-wei Du, Tian-le Tan, Guang Wu. Stable single-photon detection based on Si-avalanche photodiode in a large temperature variation range. Optoelectronics Letters, 2015, 11(5): 321‒324 https://doi.org/10.1007/s11801-015-5123-x

References

[1]
LiangY., RenM., WuE., WangJ., WuG., ZengH.. IEEE Photonics Technology Letters, 2012, 24: 1852
CrossRef Google scholar
[2]
ThomasO., YuanZ. L., ShieldsA. J.. Nature Communications, 2012, 3: 644
CrossRef Google scholar
[3]
LiangY., JianY., ChenX., WuG., WuE., ZengH.. IEEE Photonics Technology Letters, 2011, 23: 115
CrossRef Google scholar
[4]
NamekataN., AdachiS., InoueS.. IEEE Photonics Technology Letters, 2010, 22: 529
CrossRef Google scholar
[5]
ThomasO., YuanZ. L., DynesJ. F., SharpeA. W., ShieldsA. J.. Applied Physics Letters, 2010, 97: 031102
CrossRef Google scholar
[6]
ZhengF., WangC., SunZ., ZhaiG.. Journal of Optoelectronics·Laser, 2014, 25: 1254
[7]
HeB., WangJ., YuB., LiuY., WangX., XiaoL., JiaS.. Journal of Optoelectronics Laser, 2013, 24: 758
[8]
GuX., HuangK., LiY., PanH., WuE., ZengH.. Applied Physics Letters, 2010, 96: 131111
CrossRef Google scholar
[9]
GuX., HuangK., PanH., WuE., ZengH.. Laser Physics Letters, 2013, 10: 055401
CrossRef Google scholar
[10]
BaoZ., LiZ., ShiY., WuE., WuG., ZengH.. IEEE Photonics Technology Letters, 2014, 26: 1495
CrossRef Google scholar
[11]
BaoZ., LiangY., WangZ., LiZ., WuE., WuG., ZengH.. Applied Optics, 2014, 53: 3908
CrossRef Google scholar
[12]
ZhengD., ChenW., ChenL., LiC.. Journal of Optoelectronics·Laser, 2015, 26: 303
[13]
IshidaH., ShirakawaH., AndohT., AkiguchiS., KobayashiD., UeyamaK., KuraishiY., HachigaT.. Journal of Applied Physics, 2009, 106: 054701
CrossRef Google scholar
[14]
NiclassC., FaviC., KluterT., GersbachM., CharbonE.. IEEE Journal of Solid-State Circuits, 2008, 43: 2977
CrossRef Google scholar
[15]
HadfieldR. H.. Nature Photonics, 2009, 3: 696
CrossRef Google scholar
[16]
ToyoshimaM., TakayamaY., TakahashiT., SuzukiK., KimuraS., TakizawaK., KuriT., KlausW., ToyodaM., KunimoriH.. IEEE A&E Systems Magazine, 2008, 23: 10
CrossRef Google scholar
[17]
KataokaJ., SatoR., IkagawaT., KotokuJ., KuramotoY., TsubukuY., SaitoT., YatsuY., KawaiN., IshikawaY., KawabataN.. Nuclear Instruments and Methods in Physics Research Section A, 2006, 564: 300
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.11374105).

Accesses

Citations

Detail

Sections
Recommended

/