Uncooled InAs0.09Sb0.91 photoconductors with cutoff wave-length extended to 11.5 μm

Yu-zhu Gao , Xiu-ying Gong , Ran Zhou , Ji-jun Li , Yan-bin Feng , Takamitsu Makino , Hirofumi Kan

Optoelectronics Letters ›› : 352 -355.

PDF
Optoelectronics Letters ›› : 352 -355. DOI: 10.1007/s11801-015-5122-y
Article

Uncooled InAs0.09Sb0.91 photoconductors with cutoff wave-length extended to 11.5 μm

Author information +
History +
PDF

Abstract

Uncooled InAsSb photoconductors were fabricated. The photoconductors were based on InAs0.05Sb0.95 and InAs0.09Sb0.91 thick epilayers grown on InAs substrates by melt epitaxy (ME). Ge immersion lenses were set on the photoconductors. The cutoff wavelength of InAs0.09Sb0.91 detectors is obviously extended to 11.5 µm, and that of InAs0.05Sb0.95 detectors is 8.3 µm. At room temperature, the peak detectivity of Dλp* at wavelength of 6.8 µm and modulation frequency of 1 200 Hz is 1.08×109 cm·Hz1/2·W−1 for InAs0.09Sb0.91 photoconductors, the detectivity D* at wavelength of 9 µm is 7.56×108 cm·Hz1/2·W−1, and that at 11 µm is 3.92×108 cm·Hz1/2·W−1. The detectivity of InAs0.09Sb0.91 detectors at the wavelengths longer than 9 µm is about one order of magnitude higher than that of InAs0.05Sb0.95 detectors, which rises from the increase of arsenic (As) composition in InAs0.09Sb0.91 materials.

Keywords

InSb / Lattice Mismatch / Peak Detectivity / Cutoff Wavelength / Apply Physic Letter

Cite this article

Download citation ▾
Yu-zhu Gao, Xiu-ying Gong, Ran Zhou, Ji-jun Li, Yan-bin Feng, Takamitsu Makino, Hirofumi Kan. Uncooled InAs0.09Sb0.91 photoconductors with cutoff wave-length extended to 11.5 μm. Optoelectronics Letters 352-355 DOI:10.1007/s11801-015-5122-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HoangA. M., ChenG., ChevallierR., HaddadiA., RazeghiM.. Applied Physics Letters, 2014, 104: 251105

[2]

HaddadiA., ChenG., ChevallierR., HoangA. M., RazeghiM.. Applied Physics Letters, 2014, 105: 121104

[3]

KimH. S., CellekO. O., LinZ.-Y., HeZ.-Y., ZhaoX.-H., LiuS., LiH., ZhangY.-H.. Applied Physics Letters, 2012, 101: 161114

[4]

GaoY. Z., GongX. Y., KanH., AoyamaM., YamaguchiT.. Japanese of Journal of Applied Physics, 1999, 38: 1939

[5]

GaoY. Z., KanH., GaoF. S., GongX. Y., YamaguchiT.. Journal of Crystal Growth, 2002, 234: 85

[6]

GaoY., KanH., YamaguchiT.. Crystal Research and Technology, 2000, 35: 943

[7]

GaoY. Z., KanH., AoyamaM., YamaguchiT.. Japanese of Journal of Applied Physics, 2000, 39: 2520

[8]

GaoY.-z., GongX.-y., WuG.-h., FengY.-b., MakinoT., KanH., KoyamaT., HayakawaY.. International Journal of Minerals, Metallurgy, and Materials, 2013, 20: 393

[9]

GaoY., GongX., MakinoT., KanH., WuG., FengY., KoyamaT., HayakawaY.. Advanced Materials Research, 2013, 668: 664

[10]

GAOY.-z., GONGX.-y., LIJ.-j., WUG., FENGY.-b., TakamitsuM., HirofumiK.. Journal of Optoelectronics·Laser, 2015, 26: 825

[11]

GAOY.-z., GONGX.-y., WUG.-h., FENGY.-b., FANGW.-z.. Journal of Optoelectronics Laser, 2010, 21: 1751

[12]

DentonA. R., AshcroftN. W.. Physical Review A, 1991, 43: 3161

[13]

PiotrowskiJ., RogalskiA.. Infrared Physics & Technology, 2004, 46: 115

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/