Improved luminescent properties of SrZn2(PO4)2:Sm3+ doped with Li+, Na+ and K+ ions

Wei Lu , Yu-fei Liu , Ying Wang , Zhi-jun Wang , Li-bin Pang

Optoelectronics Letters ›› : 366 -369.

PDF
Optoelectronics Letters ›› : 366 -369. DOI: 10.1007/s11801-015-5116-9
Article

Improved luminescent properties of SrZn2(PO4)2:Sm3+ doped with Li+, Na+ and K+ ions

Author information +
History +
PDF

Abstract

SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet (UV) and blue light, and the emission peaks are assigned to the transitions of 4G5/2-6H5/2 (563 nm), 4G5/2-6H7/2 (597 nm and 605 nm) and 4G5/2-6H9/2 (644 nm and 653 nm). The emission intensities of SrZn2(PO4)2:Sm3+ are influenced by Sm3+ concentration, and the concentration quenching effect of SrZn2(PO4)2:Sm3+ is also observed. When doping A+ (A=Li, Na and K) ions, the emission intensity of SrZn2(PO4)2:Sm3+ can be obviously enhanced. The Commission Internationale de l'Eclairage (CIE) color coordinates of SrZn2(PO4)2:Sm3+ locate in the orange-red region. The results indicate that the phosphor has a potential application in white light emitting diodes (LEDs).

Keywords

Emission Intensity / Electric Dipole / Nonradiative Energy Transfer / Magnetic Dipole Transition / Multipolar Interaction

Cite this article

Download citation ▾
Wei Lu, Yu-fei Liu, Ying Wang, Zhi-jun Wang, Li-bin Pang. Improved luminescent properties of SrZn2(PO4)2:Sm3+ doped with Li+, Na+ and K+ ions. Optoelectronics Letters 366-369 DOI:10.1007/s11801-015-5116-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiJ., DengJ.-c., LuQ.-f., WangD.-j.. Optoelectronics Letters, 2013, 9: 293

[2]

WUD.-n., CUIR.-r., DENGC.-y.. Journal of Optoelectronics·Laser, 2014, 25: 1516

[3]

ZhangZ.-w., ShenX.-h., RenY.-j., HouW.-l., ZhangW.-g., WangD.-j.. Optics & Laser Technology, 2014, 56: 348

[4]

WUX., LiX.-c., LUOS.-y., GONGX.-y., DENGC.-y.. Journal of Optoelectronics Laser, 2013, 24: 2162

[5]

ZhangZ.-c., XuS.-c., LiP.-l., WangZ.-j., SunJ., YangZ.-p., PangL.-b.. Optoelectronics Letters, 2014, 10: 447

[6]

WangZ., LiP., YangZ., GuoQ.. Journal of Luminescence, 2012, 132: 1944

[7]

YiL., ZhouL., GongF., LanY., TongZ., SunJ.. Materials Science and Engineering: B, 2010, 172: 132

[8]

YangW.-J., ChenT.-M.. Applied Physics Letters, 2006, 88: 101903

[9]

Ding Haiyan, Huang Yanlin, Wei Donglei, Shi Liang, Qiao Xuebin and Seo Hyo Jin, Journal of The Electrochemical Society 156, J312 (2009).

[10]

LiP., WangZ., YangZ., GuoQ.. Journal of Solid State Chemistry, 2014, 220: 227

[11]

BandiV. R., GrandheB. K., JayasimhadriM., JangK., LeeH.-S., YiS.-S., JeongJ.-H.. Journal of Crystal Growth, 2011, 326: 120

[12]

WuL., JiM., WangH., KongY., ZhangY.. Optical Materials Express, 2014, 4: 1535

[13]

BlasseG.. Philips Res. Rep., 1969, 24: 131

[14]

Van UitertL. G.. Journal of Electrochemical Society, 1967, 114: 1048

[15]

XiaoQ., DongG., QiuJ.. Journal of Luminescence, 2014, 147: 163

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/