Growth and optical properties of Dy3+/Eu3+ co-doped NaYF4 single crystals with cubic lattice for white LED application

Dong-sheng Jiang , Yong-zhang Jiang , Hai-ping Xia , Jia-zhong Zhang , Shuo Yang , Xue-mei Gu , Hao-chuan Jiang , Bao-jiu Chen

Optoelectronics Letters ›› : 356 -360.

PDF
Optoelectronics Letters ›› : 356 -360. DOI: 10.1007/s11801-015-5115-x
Article

Growth and optical properties of Dy3+/Eu3+ co-doped NaYF4 single crystals with cubic lattice for white LED application

Author information +
History +
PDF

Abstract

Dy3+/Eu3+ co-doped cubic lattice NaYF4 single crystal with high quality in the size of ~Φ1.0 cm×10.0 cm was grown by an improved Bridgman method using potassium fluoride (KF) as assistant flux. X-ray diffraction (XRD), absorption spectra, excitation spectra and emission spectra are measured to investigate the phase and luminescent properties of the crystal. The effects of excitation wavelength and concentrations of Dy3+ and Eu3+ ions on the luminescent characteristics are analyzed. The NaYF4 single crystal with the doping molar concentrations of 1.205% Dy3+ and 0.366% Eu3+ exhibits an excellent white light emission with chromaticity coordinates of x=0.321, y=0.332. It indicates that the Dy3+/Eu3+ co-doped cubic lattice NaYF4 single crystal can be a potential luminescent material for the ultraviolet (UV) light excited white light emitting diode (w-LED).

Keywords

Correlate Color Temperature / Potassium Fluoride / Strong Blue Emission / Doping Molar Concentration / Hexagonal NaYF

Cite this article

Download citation ▾
Dong-sheng Jiang, Yong-zhang Jiang, Hai-ping Xia, Jia-zhong Zhang, Shuo Yang, Xue-mei Gu, Hao-chuan Jiang, Bao-jiu Chen. Growth and optical properties of Dy3+/Eu3+ co-doped NaYF4 single crystals with cubic lattice for white LED application. Optoelectronics Letters 356-360 DOI:10.1007/s11801-015-5115-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhuC. F., ChaussedenS., LiuS. J., ZhangY. F., MonteilA., GaumerN., YueY. Z.. Journal of Alloys and Compounds, 2013, 555: 232

[2]

WANGP.-y., XIAH.-p., PENGJ.-t., TANGL., HUH.-y.. Journal of Optoelectronics Laser, 2013, 24: 2143

[3]

DONGY.-m., XIAH.-p., FUL., LIS.-s., GUX.-m., ZHANGJ.-l., WANGD.-j., ZHANGY.-p., JIANGH.-c., CHENB.-j.. Optoelectronics Letters, 2014, 10: 262

[4]

FuL., XiaH. P., DongY. M., LiS. S., GuX. M., JiangH. C., ChenB. J.. IEEE Photonics Technology Letters, 2014, 26: 1485

[5]

JiaoZ. W., LiS. X., YanQ. F., WangX. Q., ShenD. Z.. Journal of Physics and Chemistry of Solids, 2011, 72: 252

[6]

SuyverJ. F., GrimmJ., van VeenM. K., BinerD., KrämerK. W., GüdelH. U.. Journal of Luminescence, 2006, 117: 1

[7]

GomesL., LibrantzA. F. H., JagosichF. H., AlvesW. A. L., RanieriI. M., BaldochiS. L.. Journal of Applied Physics, 2009, 106: 103508

[8]

LiuP., ZhouG. H., ZhangJ., ChenS., YangY., WangS. W.. Journal of Luminescence, 2013, 144: 57

[9]

DingM. Y., XiJ. H., YinS. L., JiZ. G.. Superlattices and Microstructures, 2015, 83: 390

[10]

SouzaW. S., DominguesR. O., BuenoL. A., da CostaE. B., Gouveia-NetoA. S.. Journal of Luminescence, 2013, 144: 87

[11]

GUC.-J., CHENX.-y., SUND.-l., LUOJ.-q., CHENJ.-k., ZHANGH.-l., ZHANGQ.-l., YINS.-t.. Journal of Optoelectronics Laser, 2014, 25: 491

[12]

ThomaR. E., HebertG. M., InsleyH., WeaverC. F.. Inorganic Chemistry, 1963, 2: 1005

[13]

HuH. Y., XiaH. P., HuJ. X., WangP. Y., PengJ. T., ZhangY. P., JiangH. C., ChenB. J.. Journal of Alloys and Compounds, 2013, 573: 187

[14]

MortimerR. J., VarleyT. S.. Displays, 2011, 32: 35

[15]

ZhengY., ChenB. J., ZhongH. Y., SunJ. S., ChengL. H., LiX. P.. Journal of the American Ceramic Society, 2011, 94: 1766

[16]

TANL., LIUY.-l., YUF.-h.. Optical Instruments, 2004, 26: 41

[17]

DavisW., OhnoY.. Optical Engineering, 2010, 49: 033602

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/