Enhancement of fluorescence emission and signal gain at 1.53 µm in Er3+/Ce3+ co-doped tellurite glass fiber

Feng-jing Yang , Bo Huang , Li-bo Wu , Ya-wei Qi , Sheng-xi Peng , Jun Li , Ya-xun Zhou

Optoelectronics Letters ›› : 361 -365.

PDF
Optoelectronics Letters ›› : 361 -365. DOI: 10.1007/s11801-015-5111-1
Article

Enhancement of fluorescence emission and signal gain at 1.53 µm in Er3+/Ce3+ co-doped tellurite glass fiber

Author information +
History +
PDF

Abstract

Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier (EDFA). The absorption spectra, up-conversion spectra and 1.53 µm band fluorescence spectra of glass samples were measured. It is shown that the 1.53 µm band fluorescence emission intensity of Er3+-doped tellurite glass fiber is improved obviously with the introduction of an appropriate amount of Ce3+, which is attributed to the energy transfer (ET) from Er3+ to Ce3+. Meanwhile, the 1.53 µm band optical signal amplification is simulated based on the rate and power propagation equations, and an increment in signal gain of about 2.4 dB at 1 532 nm in the Er3+/Ce3+ co-doped tellurite glass fiber is found. The maximum signal gain reaches 29.3 dB on a 50 cm-long fiber pumped at 980 nm with power of 100 mW. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass is a good gain medium applied for 1.53 µm broadband and high-gain EDFA.

Keywords

Glass Sample / Amplify Spontaneous Emission / Excited State Absorption / Tellurite Glass / Radiative Transition Probability

Cite this article

Download citation ▾
Feng-jing Yang, Bo Huang, Li-bo Wu, Ya-wei Qi, Sheng-xi Peng, Jun Li, Ya-xun Zhou. Enhancement of fluorescence emission and signal gain at 1.53 µm in Er3+/Ce3+ co-doped tellurite glass fiber. Optoelectronics Letters 361-365 DOI:10.1007/s11801-015-5111-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SajnaM. S., ThomasS., MaryK. A. A., JosephC., BijuP. R., UnnikrishnanN. V.. Journal of Luminescence, 2015, 159: 55

[2]

HuY., JiangS., SorbelloG., LuoT., DingY., HwangB. C., PeyghambarianN.. Journal of the Optical Society of America B-Optical Physics, 2001, 18: 1928

[3]

ÇelikbilekM., ErsunduA. E., ZayimE.O., AydinS.. Journal of Alloys and Compounds, 2015, 637: 162

[4]

ZhangW. J., LinJ., ChengM. Z., ZhangS., JiaY. J., ZhaoJ. H.. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 159: 39

[5]

AnthonyR., LahiriR., BiswasS.. Microwave and Optical Technology Letters, 2014, 125: 2463

[6]

PandeyA., SomS., KumarV., KumarV., KumarK., RaiV. K., SwartH. C.. Sensors and Actuators B-Chemical, 2014, 202: 1305

[7]

ZhengS. C., QiY. W., PengS. X., YinD. D., ZhouY. X., DaiS. X.. Optoelectronics Letters, 2013, 9: 461

[8]

DantelleG., MortierM., VivienD., PatriarcheG.. Optical Materials, 2006, 28: 638

[9]

SasikalaT., MoorthyL. R., PavaniK., ChengaiahT.. Journal of Alloys and Compounds, 2012, 542: 271

[10]

JuddB. R.. Physical Review, 1992, 127: 750

[11]

OfeltG. S.. Journal of Chemical Physics, 1962, 37: 511

[12]

DoustiM. R., AmjadR. J., MahrazZ. A. S.. Journal of Molecular Structure, 2015, 1079: 347

[13]

WangP. Y., XiaH. P., PengJ. T., HuH. Y., TangL., ZhangY. P., ChenB. J., JiangH. J.. Optoelectronics Letters, 2013, 9: 285

[14]

KhanG. R.. Optical Fiber Technology, 2012, 18: 421

[15]

ZhouY. X., YinD. D., ZhengS. C., XuX. C.. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129: 1

[16]

McCumberD. E.. Physical Review, 1964, 136: 954

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/