A mid-infrared methane detection device based on dual-channel lock-in amplifier

Ling-jiao Zheng , Kai-yuan Zheng , Chuan-tao Zheng , Yue Zheng , Mei-mei Chen , Yi-ding Wang

Optoelectronics Letters ›› : 298 -302.

PDF
Optoelectronics Letters ›› : 298 -302. DOI: 10.1007/s11801-015-5102-2
Article

A mid-infrared methane detection device based on dual-channel lock-in amplifier

Author information +
History +
PDF

Abstract

A portable dual-channel digital/analogue hybrid lock-in amplifier (LIA) is developed, and its amplitude detection error is less than 10% when the signal-to-noise ratio (SNR) is larger than −12 dB. Then, a differential mid-infrared methane (CH4) detection device is experimentally demonstrated based on a wideband incandescence wire-source and a multi-pass spherical reflector. The experiments are carried out to obtain the sensing performance of the device. With the absorption length of only ∼4.8 cm, the limit of detection (LoD) is about 71.43 mg/m3, and the detection range is from 0 mg/m3 to 5.00×104 mg/m3. As the concentration gets larger than 714.30 mg/m3, the relative detection error falls into the range of −5%–+5%. Two seven-hour-measurements are done on the CH4 samples with concentrations of 1.43×103 mg/m3 and 4.29×103 mg/m3, respectively, and the results show that the maximum relative error is less than 5%. Because of the cost effective incandescence wire-source, the small-size and inexpensive dual-channel LIA, and the small-size absorption pool and reflector, the developed device shows potential applications of CH4 detection in coal mine production and environmental protection.

Keywords

Maximum Relative Error / Detection Device / Absorption Length / Tunable Diode Laser Absorption Spectroscopy / High Concentration Range

Cite this article

Download citation ▾
Ling-jiao Zheng, Kai-yuan Zheng, Chuan-tao Zheng, Yue Zheng, Mei-mei Chen, Yi-ding Wang. A mid-infrared methane detection device based on dual-channel lock-in amplifier. Optoelectronics Letters 298-302 DOI:10.1007/s11801-015-5102-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HuangJ, ZhaiB, YeW, ZhengC, WangY. Journal of Optoelectronics·Laser, 2014, 25: 947

[2]

LvR, SongN, SongF, YeW, ZhengC, WangY. Journal of Optoelectronics·Laser, 2013, 24: 1350

[3]

ZhangG J, WuX L. Optics and Lasers in Engineering, 2004, 42: 219

[4]

GrosselA, ZéninariV, ParvitteB, JolyL, CourtoisD. Applied Physics B: Lasers and Optics, 2007, 88: 483

[5]

KamatP C, RollerC B, NamjouK, JeffersJ D, FaramarzalianA, SalasR, McCannP J. Applied Optics, 2007, 46: 3969

[6]

KanR F, DengF Z, ZhangY J, LiuJ G, LiuC, WangM, GaoS H, ChenJ. Chinese Physics B, 2005, 14: 1904

[7]

XiaH, LiuW, ZhangY, KanR, WangM, HeY, CuiY, RuanJ, GengH. Chinese Optics Letters, 2008, 6: 437

[8]

LiuJ, TanQ, ZhangW, XueC, GuoT, XiongJ. Measurement, 2011, 44: 823

[9]

YeW L, ZhengC T, YuX, ZhaoC X, SongZ W, WangY D. Sensors and Actuators B: Chemical, 2011, 155: 37

[10]

ZhengC T, YeW L, LiG L, YuX, ZhaoC X, SongZ W, WangY D. Sensors and Actuators B: Chemical, 2011, 160: 389

[11]

YuX, LvR H, SongF, ZhengC T, WangY D. Spectroscopy Letters, 2014, 47: 30

[12]

ZhengC T, YeW L, HuangJ Q, CaoT S, LvM, DangJ M, WangY D. Sensors and Actuators B: Chemical, 2014, 190: 249

[13]

SonnaillonM O, BonettoF J. Review of Scientific Instruments, 2005, 76: 024703

[14]

FerriG, De LaurentiisP, DiNataleC, D’AmicoA. Sensors and Actuators A: Physical, 2001, 92: 263

[15]

MarschnerU, GrtzH, JettkantB, RuwischD, WoldtG, FischerW J, ClasbrummelB. Sensors and Actuators A: Physical, 2009, 156: 145

[16]

De MarcellisA, FerriG, Di NataleC, MartinelliE, D’AmicoA. IEEE Sensors Journal, 2012, 12: 1377

[17]

D’AmicoA, De MarcellisA, Di CarloC, Di NataleC, FerriG, MartinelliE, PaolesseR, StornelliV. Sensors and Actuators B: Chemical, 2010, 144: 400

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/