Effects of Mg-doping concentration on the characteristics of InGaN based solar cells

Gang Lu , Bo Wang , Yun-wang Ge

Optoelectronics Letters ›› : 348 -351.

PDF
Optoelectronics Letters ›› : 348 -351. DOI: 10.1007/s11801-015-5100-4
Article

Effects of Mg-doping concentration on the characteristics of InGaN based solar cells

Author information +
History +
PDF

Abstract

A major challenge in GaN based solar cell design is the lack of holes compared with electrons in the multiple quantum wells (MQWs). We find that GaN based MQW photovoltaic devices with five different Mg-doping concentrations of 0 cm−3, 5×1017 cm−3, 2×1018 cm−3, 4×1018 cm−3 and 7×1018 cm−3 in GaN barriers can lead to different hole concentrations in quantum wells (QWs). However, when the Mg-doping concentration is over 1×1018 cm−3, the crystal quality degrades, which results in the reduction of the external quantum efficiency (EQE), short circuit current density and open circuit voltage. As a result, the sample with a slight Mg-doping concentration of 5×1017 cm−3 exhibits the highest conversion efficiency.

Keywords

Solar Cell / External Quantum Effi / Apply Physic Letter / High Conversion Efficiency / Photogenerated Carrier

Cite this article

Download citation ▾
Gang Lu, Bo Wang, Yun-wang Ge. Effects of Mg-doping concentration on the characteristics of InGaN based solar cells. Optoelectronics Letters 348-351 DOI:10.1007/s11801-015-5100-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DavidA., GrundmannM. J.. Applied Physics Letters, 2010, 97: 033501

[2]

NanishiY., SaitoY., YamaguchiT.. Japanese Journal of Applied Physics, 2003, 42: 2549

[3]

FUY.-y., DAIL.-p., WANGS.-y., ZHANGG.-j.. Optoelectronics Letters, 2013, 9: 278

[4]

LiuJ., WuZ. C., KuangS. P.. Optoelectronics and Advanced Materials-Rapid Communications, 2013, 7: 343

[5]

VosA. D.. Endoreversible Thermodynamics of Solar Energy Conversion, 1992, Oxford, Oxford University Press, 90

[6]

JaniO., FergusonI., HonsbergC., KurtzS.. Applied Physics Letters, 2007, 91: 132117

[7]

HaqueK. A. S. M. E.. Optoelectronics Letters, 2013, 9: 177

[8]

LaiK. Y., LinG. J., LaiY. L., ChenY. F., HeJ. H.. Applied Physics Letters, 2010, 96: 081103

[9]

JampanaB. R., MeltonA. G., JamilM. N., FaleevN., OpilaR. L., FergusonI. T., HonsbergC. B.. IEEE Electron Device Letters, 2010, 31: 32

[10]

ZengS. W., CaiX. M., ZhangB. P.. IEEE Journal of Quantum Electronics, 2010, 46: 783

[11]

DahalR., PanthaB., LiJ., LiJ. Y., JiangH. X.. Applied Physics Letters, 2011, 98: 263504

[12]

YangC. C., SheuJ. K., LiangX. W., HuangM. S., LeeM. L., ChangK. H., TuS. J., HuangF. W., LaiW. C.. Applied Physics Letters, 2010, 97: 021113

[13]

FarrellR. M., NeufeldC. J., CruzS. C., LangJ. R., IzaM., KellerS., NakamuraS., DenBaarsS. P., MishraU. K., SpeckJ. S.. Applied Physics Letters, 2011, 98: 201107

[14]

DahalR., LiJ., AryalK., LinJ. Y., JiangH. X.. Applied Physics Letters, 2010, 97: 073115

[15]

WuL. W., ChangS. J., WenT. C., SuY. K., ChenJ. F., LaiW. C., KuoC. H., ChenC. H., SheuJ. K.. IEEE Journal of Quantum Electronics, 2002, 38: 446

[16]

CaoX. A., StokesE. B., SandvikP. M., LeBoeufS. F., KretchmerJ., WalkerD.. IEEE Electron Device Letters, 2002, 23: 535

[17]

LeeY. J., LeeM. H., ChengC. M., YangC. H.. Applied Physics Letters, 2011, 98: 263504

[18]

JaniO., FergusonI., HonsbergC., KurtzS.. Applied Physics Letters, 2007, 91: 132117

[19]

WiererJ. J., KoleskeD. D., LeeS. R.. Applied Physics Letters, 2012, 100: 111119

[20]

SangL. W., TakeguchiM., LeeW., NakayamaY., LozachM., SekiguchiT., SumiyaM.. Applied Physics Express, 2010, 3: 111004

[21]

KuwaharaY., FujiiT., FujiyamaY., SugiyamaT., IwayaM., TakeuchiT., KamiyamaS., AkasakiI., AmanoH.. Applied Physics Express, 2010, 3: 111001

[22]

RimadaJ. C., HernándezL., ConnollyJ. P., BarnhamK. W. J.. Microelectronics Journal, 2007, 38: 513

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/