A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/silicon slot waveguide

Xiao-liang Huang , Cui-ting Li , Pei-pei Dang , Chuan-tao Zheng

Optoelectronics Letters ›› : 264 -267.

PDF
Optoelectronics Letters ›› : 264 -267. DOI: 10.1007/s11801-015-5081-3
Article

A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/silicon slot waveguide

Author information +
History +
PDF

Abstract

By using poled-polymer/silicon slot waveguides in the active region and the Pockels effect of the poled-polymer, we propose a kind of Mach-Zehnder interferometer (MZI) electro-optic (EO) switch operated at 1 550 nm. Structural parameters are optimized for realizing normal switching function. Dependencies of switching characteristics on the slot waveguide parameters are investigated. For the silicon strip with dimension of 170 nm×300 nm, as the slot width varies from 50 nm to 100 nm, the switching voltage can be as low as 1.0 V with active region length of only 0.17–0.35 mm, and the length of the whole device is only about 770–950 μm. The voltage-length product of this switching structure is only 0.17–0.35 V·mm, and it is at least 19–40 times smaller than that of the traditional polymer MZI EO switch, which is 6.69 V·mm. Compared with our previously reported MZI EO switches, this switch exhibits some superior characteristics, including low switching voltage, compact device size and small wavelength dependency.

Keywords

Effective Refractive Index / Slot Width / Switching Voltage / Slot Waveguide / Silicon Strip

Cite this article

Download citation ▾
Xiao-liang Huang, Cui-ting Li, Pei-pei Dang, Chuan-tao Zheng. A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/silicon slot waveguide. Optoelectronics Letters 264-267 DOI:10.1007/s11801-015-5081-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EnamiY, DeroseC T, MathineD, LoychikC, GreenleeC, NorwoodR A, KimT D, LuoJ, TianY, JenA K Y, PeyghambarianN. Nature Photonics, 2007, 1: 180

[2]

EnamiY, MathineD, DeRoseC T, NorwoodR A, LuoJ, JenA Y, PeyghambarianN. Applied Physics Letters, 2007, 91: 093505

[3]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Optics Communications, 2008, 281: 5998

[4]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Applied Physics B, 2009, 96: 95

[5]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Journal of Modern Optics, 2009, 56: 1383

[6]

XuQ, SchmidtB, PradhanS, LipsonM. Nature, 2005, 435: 325

[7]

ThomsonD J, GardesF Y, FedeliJ M, ZlatanovicS, HuY, KuoB P P, MyslivetsE, AlicN, RadicS, MashanovichG Z, ReedG T. IEEE Photonics Technology Letters, 2012, 24: 234

[8]

DongP, LiaoS, FengD, LiangH, ZhengD, ShafiihaR, KungC C, QianW, LiG L, ZhengX Z, KrishnamoorthyA V, AsghariM. Optics Express, 2009, 17: 22484

[9]

GreenW M, RooksM J, SekaricL, VlasovY A. Optics Express, 2007, 15: 17106

[10]

PalmerR, AlloattiL, KornD, SchindlerP C, BaierM, BoltenJ, WahlbrinkT, WaldowM, DinuR, FreudeW, KoosC, LeutholdJ. IEEE Photonics Technology Letters, 2013, 25: 1226

[11]

FujikataJ, UshidaJ, Ming-BinY, ShiYangZ, LiangD, Guo-QiangP L, Dim-LeeK, NakamuraT. 25 GHz Operation of Silicon Optical Modulator with Projection MOS Structure, 2010, 1

[12]

ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Optics & Laser Technology, 2010, 42: 457

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/