A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/silicon slot waveguide

Xiao-liang Huang, Cui-ting Li, Pei-pei Dang, Chuan-tao Zheng

Optoelectronics Letters ›› , Vol. 11 ›› Issue (4) : 264-267.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (4) : 264-267. DOI: 10.1007/s11801-015-5081-3
Article

A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/silicon slot waveguide

Author information +
History +

Abstract

By using poled-polymer/silicon slot waveguides in the active region and the Pockels effect of the poled-polymer, we propose a kind of Mach-Zehnder interferometer (MZI) electro-optic (EO) switch operated at 1 550 nm. Structural parameters are optimized for realizing normal switching function. Dependencies of switching characteristics on the slot waveguide parameters are investigated. For the silicon strip with dimension of 170 nm×300 nm, as the slot width varies from 50 nm to 100 nm, the switching voltage can be as low as 1.0 V with active region length of only 0.17–0.35 mm, and the length of the whole device is only about 770–950 μm. The voltage-length product of this switching structure is only 0.17–0.35 V·mm, and it is at least 19–40 times smaller than that of the traditional polymer MZI EO switch, which is 6.69 V·mm. Compared with our previously reported MZI EO switches, this switch exhibits some superior characteristics, including low switching voltage, compact device size and small wavelength dependency.

Keywords

Effective Refractive Index / Slot Width / Switching Voltage / Slot Waveguide / Silicon Strip

Cite this article

Download citation ▾
Xiao-liang Huang, Cui-ting Li, Pei-pei Dang, Chuan-tao Zheng. A Mach-Zehnder interferometer electro-optic switch with ultralow voltage-length product using poled-polymer/silicon slot waveguide. Optoelectronics Letters, , 11(4): 264‒267 https://doi.org/10.1007/s11801-015-5081-3

References

[1]
EnamiY, DeroseC T, MathineD, LoychikC, GreenleeC, NorwoodR A, KimT D, LuoJ, TianY, JenA K Y, PeyghambarianN. Nature Photonics, 2007, 1: 180
CrossRef Google scholar
[2]
EnamiY, MathineD, DeRoseC T, NorwoodR A, LuoJ, JenA Y, PeyghambarianN. Applied Physics Letters, 2007, 91: 093505
CrossRef Google scholar
[3]
ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Optics Communications, 2008, 281: 5998
CrossRef Google scholar
[4]
ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Applied Physics B, 2009, 96: 95
CrossRef Google scholar
[5]
ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Journal of Modern Optics, 2009, 56: 1383
CrossRef Google scholar
[6]
XuQ, SchmidtB, PradhanS, LipsonM. Nature, 2005, 435: 325
CrossRef Google scholar
[7]
ThomsonD J, GardesF Y, FedeliJ M, ZlatanovicS, HuY, KuoB P P, MyslivetsE, AlicN, RadicS, MashanovichG Z, ReedG T. IEEE Photonics Technology Letters, 2012, 24: 234
CrossRef Google scholar
[8]
DongP, LiaoS, FengD, LiangH, ZhengD, ShafiihaR, KungC C, QianW, LiG L, ZhengX Z, KrishnamoorthyA V, AsghariM. Optics Express, 2009, 17: 22484
CrossRef Google scholar
[9]
GreenW M, RooksM J, SekaricL, VlasovY A. Optics Express, 2007, 15: 17106
CrossRef Google scholar
[10]
PalmerR, AlloattiL, KornD, SchindlerP C, BaierM, BoltenJ, WahlbrinkT, WaldowM, DinuR, FreudeW, KoosC, LeutholdJ. IEEE Photonics Technology Letters, 2013, 25: 1226
CrossRef Google scholar
[11]
FujikataJ, UshidaJ, Ming-BinY, ShiYangZ, LiangD, Guo-QiangP L, Dim-LeeK, NakamuraT. 25 GHz Operation of Silicon Optical Modulator with Projection MOS Structure, 2010, 1
[12]
ZhengC T, MaC S, YanX, WangX Y, ZhangD M. Optics & Laser Technology, 2010, 42: 457
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61107021, 61177027 and 61077074), the Ministry of Education of China (Nos.20110061120052 and 20120061130008), and the Science and Technology Department of Jilin Province of China (No.20130522161JH).

Accesses

Citations

Detail

Sections
Recommended

/