Influence of annealing temperature of ZnO film as the electron transport layer on the performance of polymer solar cells

Yong-fu Li , Ya-guang Zhang , Jun-liang Liu , Qing-pu Wang

Optoelectronics Letters ›› : 260 -263.

PDF
Optoelectronics Letters ›› : 260 -263. DOI: 10.1007/s11801-015-5072-4
Article

Influence of annealing temperature of ZnO film as the electron transport layer on the performance of polymer solar cells

Author information +
History +
PDF

Abstract

The surface morphology of ZnO films at different annealing temperatures and the performance of polymer solar cells (PSCs) with ZnO as the electron transport layer are studied. The low temperature sol-gel processed ZnO film has smoother surface than that in higher temperature, which results in the best photovoltaic performance with a power conversion efficiency (PCE) of 3.66% for P3HT:PC61BM based solar cell. With increasing annealing temperature, the photovoltaic performance first deceases and then increases. It could be ascribed to the synergy effects of interface area, the conductivity and surface energy of ZnO film and series resistance of devices.

Keywords

Active Layer / Water Contact Angle / Power Conversion Efficiency / Photovoltaic Performance / Polymer Solar Cell

Cite this article

Download citation ▾
Yong-fu Li, Ya-guang Zhang, Jun-liang Liu, Qing-pu Wang. Influence of annealing temperature of ZnO film as the electron transport layer on the performance of polymer solar cells. Optoelectronics Letters 260-263 DOI:10.1007/s11801-015-5072-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GunesS, NeugebauerH, SariciftciN S. Chemical Reviews, 2007, 107: 1324

[2]

ZhouY, PeiJ, DongQ, SunX, LiuY, TianW. The Journal of Physical Chemistry C, 2009, 113: 7882

[3]

LiangY, XuZ, XiaJ, TsaiS-T, WuY, LiG, RayC, YuL. Advances Materials, 2010, 22: E135

[4]

YinB, YangL, LiuY, ChenY, QiQ, ZhangF, YinS. Applied Physics Letters, 2010, 97: 023303

[5]

DouL, YouJ, YangJ, ChenC-C, HeY, MuraseS, MoriartyT, EmeryK, LiG, YangY. Nature Photonics, 2012, 6: 180

[6]

XuX-r, QinW-j, DingG-j, LiuD-y, MaC-y, YinS-g. Journal of Optoelectronics·Laser, 2013, 24: 2295

[7]

LiuD-y, QinW-j, DongN, ZhangQ, YangL-y, YinS-g. Journal of Optoelectronics·Laser, 2014, 25: 1363

[8]

CheunH, Fuentes-HernandezC, ZhouY, PotscavageW JJr., KimS J, ShimJ, DindarA, KippelenB. The Journal of Physical Chemistry C, 2010, 114: 20713

[9]

KyawA K K, SunX W, JiangC Y, LoG Q, ZhaoD W, KwongD L. Applied Physics Letters, 2008, 93: 221107

[10]

BaoX, YangA, YangY, WangT, SunL, WangN, HanL. Physica B: Condensed Matter, 2014, 432: 1

[11]

ApostolukA, ZhuY, MasenelliB, DelaunayJ-J, SibińskiM, ZnajdekK, FocsaA, KaliszewskacI. Microelectronic Engineering, 2014, 127: 51

[12]

LinZ, JiangC, ZhuC, ZhangJ. ACS Applied Materials & Interfaces, 2013, 5: 713

[13]

BaoX, SunL, ShenW, YangC, ChenW, YangR. Journal of Materials Chemistry A, 2014, 2: 1732

[14]

LookD C. Materials Science and Engineering: B80, 2001, 383

[15]

Özgur, AlivovY, LiuC, TekeA, ReshchikovM A, DoğanS, AvrutinV, ChoS-J, MorkoçH. Journal of Applied Physics, 2005, 98: 041301

[16]

BaoX, YangY, YangA, WangN, WangT, DuZ, YangC, WenS, YangR. Materials Science and Engineering: B, 2013, 178: 263

[17]

MaZ, TangZ, WangE, AnderssonM, InganasO, ZhangF. The Journal of Physical Chemistry C, 2012, 116: 24462

[18]

NatsumeY, SakataH. Thin Solid Films, 2000, 372: 30

[19]

TangZ, AnderssonL M, GeorgeZ, VandewalK, TvingstedtK, HerikssonP, KroonR, AnderssonM R, InganäsO. Advanced Materials, 2012, 24: 554

[20]

BulliardX, IhnS-G, YunS, KimY, ChoiD, ChoiJ-Y, KimM, SimM, ParkJ H, ChoiW, ChoK. Advanced Functional Materials, 2010, 20: 4381

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/