Experimental study of GaN based blue light emitting diodes with a thin AlInN layer in front of the electron blocking layer

Gang Lu, Bo Wang, Yun-wang Ge

Optoelectronics Letters ›› , Vol. 11 ›› Issue (4) : 248-251.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (4) : 248-251. DOI: 10.1007/s11801-015-5065-3
Article

Experimental study of GaN based blue light emitting diodes with a thin AlInN layer in front of the electron blocking layer

Author information +
History +

Abstract

The GaN based blue light emitting diodes (LEDs) with a thin AlInN layer inserted in front of the electron blocking layer (EBL) are experimentally studied. It is found that inserting a thin EBL can improve the light output power and reduce the efficiency droop compared with the conventional AlGaN counterparts. Based on numerical simulation and analysis, the improvement on the electrical and optical characteristics is mainly attributed to the reduction of the electron leakage current, which increases the concentration of carriers in the quantum well (QW) when the thin AlInN layer is used.

Keywords

Quantum Well / Hole Injection / Apply Physic Letter / Electron Leakage / Light Output Power

Cite this article

Download citation ▾
Gang Lu, Bo Wang, Yun-wang Ge. Experimental study of GaN based blue light emitting diodes with a thin AlInN layer in front of the electron blocking layer. Optoelectronics Letters, , 11(4): 248‒251 https://doi.org/10.1007/s11801-015-5065-3

References

[1]
AkyolF, NathD N, KrishnamoorthyS, ParkP S, RajanS. Applied Physics Letters, 2012, 100: 111118
CrossRef Google scholar
[2]
FuY -Y, DaiL-P, WangS-Y, ZhangG-J. Optoelectronics Letters, 2013, 9: 278
CrossRef Google scholar
[3]
ShenY C, MüllerG O, WatanabeS, GardnerN F, MunkholmA, KramesM R. Applied Physics Letters, 2007, 91: 141101
CrossRef Google scholar
[4]
GardnerN F, MüllerG O, ShenY C, ChenG, WatanabeS, GotzW, KramesM R. Applied Physics Letters, 2007, 91: 243506
CrossRef Google scholar
[5]
KimM H, SchubertM F, DaiQ, KimJ K, SchubertE F, PiprekJ, ParkY. Applied Physics Letters, 2007, 91: 183507
CrossRef Google scholar
[6]
Ehteshamul HaqueK A S M. Optoelectronics Letters, 2013, 9: 177
CrossRef Google scholar
[7]
XieJ, NiX, FanQ, ShimadaR, OzgurU, MorkocH. Applied Physics Letters, 2008, 93: 121107
CrossRef Google scholar
[8]
WuL J, LiS T, LiuC, WangH L, LuT P, ZhangK, XiaoG W, ZhouY G, ZhengS W, YinY A, YangX D. Chinese Physics B, 2012, 21: 068506
CrossRef Google scholar
[9]
MonemarB, SerneliusB E. Applied Physics Letters, 2007, 91: 181103
CrossRef Google scholar
[10]
WangC H, ChenJ R, ChiuC H, KuoC H, LiY L, LuT C, WangS C. IEEE Photonics Technology Letters, 2010, 22: 236
CrossRef Google scholar
[11]
DavidA, GrundmannM J, KaedingJ F, GardnerN F, MihopoulosT G, KramesM R. Applied Physics Letters, 2008, 92: 053502
CrossRef Google scholar
[12]
HanS H, LeeD Y, LeeS J, ChoC Y, KwonM K, LeeS P, NohD Y, KimD J, KimY C, ParkS J. Applied Physics Letters, 2009, 94: 231123
CrossRef Google scholar
[13]
WangC H, KeC C, LeeC Y, ChangS P, ChangW T, LiJ C. Applied Physics Letters, 2010, 97: 261103
CrossRef Google scholar
[14]
WangT H, XuJ L. Chinese Physics B, 2013, 22: 730
[15]
ChoiS, KimH J, KimS S, LiuJ, KimJ, RyouJ H, DupuisR D, FischerA M, PonceF A. Applied Physics Letters, 2010, 96: 221105
CrossRef Google scholar
[16]
KuoY K, TsaiM C, YenS H. Optics Communications, 2009, 282: 4252
CrossRef Google scholar
[17]
GongC C, FanG H, ZhangY Y, XuY Q, LiuX P, ZhengS W, YaoG R, ZhouD T. Chinese Physics B, 2012, 21: 583
[18]
LiuC, LiS T, LuT P, WuL J, YinY A, XiaoG W, ZhouY G, WangH L. IEEE Photonics Technology Letters, 2012, 24: 14
[19]
Bernardini F., Nitride Semiconductor Devices: Principles and Simulation, Edited by J. Piprek, New York: Wiley, 4968 (2007).
[20]
VurgaftmanI, MeyerJ R, Ram-MohanL R. Journal of Applied Physics, 2001, 89: 5815
CrossRef Google scholar
[21]

This work has been supported by the Key Scientific Research Project of Higher Education of Henan Province (No.15A510033).

Accesses

Citations

Detail

Sections
Recommended

/