Light focusing through strongly scattering media by binary amplitude modulation

Hui-ling Huang, Cun-zhi Sun, Zi-yang Chen, Ji-xiong Pu

Optoelectronics Letters ›› , Vol. 11 ›› Issue (4) : 313-316.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (4) : 313-316. DOI: 10.1007/s11801-015-5062-6
Article

Light focusing through strongly scattering media by binary amplitude modulation

Author information +
History +

Abstract

Based on the angular spectrum method and the circular Gaussian distribution (CGD) model of scattering media, we numerically simulate light focusing through strongly scattering media. A high contrast focus in the target area is produced by using feedback optimization algorithm with binary amplitude modulation. It is possible to form the focusing with one focus or multiple foci at arbitrary areas. The influence of the number of square segments of spatial light modulation on the enhancement factor of intensity is discussed. Simulation results are found to be in good agreement with theoretical analysis for light refocusing.

Keywords

Enhancement Factor / Speckle Pattern / Spatial Light Modulation / Optic Letter / Transmission Matrix

Cite this article

Download citation ▾
Hui-ling Huang, Cun-zhi Sun, Zi-yang Chen, Ji-xiong Pu. Light focusing through strongly scattering media by binary amplitude modulation. Optoelectronics Letters, , 11(4): 313‒316 https://doi.org/10.1007/s11801-015-5062-6

References

[1]
SebbahP. Waves and Imaging through Complex Media, 2001, Dordrecht, Kluwer
CrossRef Google scholar
[2]
LiZ-f, LiH, XieW-m, FanL-l. Optoelectronics Letters, 2010, 6: 376
CrossRef Google scholar
[3]
VellekoopI M, MoskA P. Optics Letters, 2007, 32: 2309
CrossRef Google scholar
[4]
VellekoopI M, MoskA P. Optics Communications, 2008, 281: 3071
CrossRef Google scholar
[5]
CuiM. Optics Letters, 2011, 36: 870
CrossRef Google scholar
[6]
ConkeyD B, BrownA, CaravacaA, PiestunR. Optics Express, 2012, 20: 4840
CrossRef Google scholar
[7]
WiltB A, BurnsL D, HoE T W, GhoshK K, MukamelE A, SchnitzerM J. Annual Review Neuroscience, 2009, 32: 435
CrossRef Google scholar
[8]
VellekoopI M, AegerterC M. Optics Letters, 2010, 35: 1245
CrossRef Google scholar
[9]
ČižmárT, MaziluM, DholakiaK. Nature Photonics, 2010, 4: 388
CrossRef Google scholar
[10]
DerodeA, TourinA, RosnyJ d, TanterM, YonS, FinkM. Physics Review Letters, 2003, 90: 014301
CrossRef Google scholar
[11]
LeroseyG, RosnyJ d, TourinA, FinkM. Science, 2007, 315: 1120
CrossRef Google scholar
[12]
J. C. Dainty, Laser Speckle and Related Phenomena, Berlin: Springer, 1984.
[13]
XuT-h, ChaoJ, JingW-c, ZhangH-x, JiaD-g, ZhangY-m. Optoelectronics Letters, 2008, 4: 59
CrossRef Google scholar
[14]
GoodmanJ W. Statistical Optics, 2000, New York, Wiley
[15]
AkbulutD, HuismanT J, PuttenE G v, VosW L, MoskA P. Optics Express, 2011, 19: 4017
CrossRef Google scholar
[16]
GoodmanJ W. Introduction to Fourier Optics, 2005, New York, McGraw-Hill
[17]
BornM, WolfE. Principles of Optics: Electromagnetic Theory of Propagation, Interferance and Diffraction of Light, 1999,
CrossRef Google scholar
[18]
LiJ, PengZ, FuY. Optics Communications, 2007, 280: 243
CrossRef Google scholar
[19]
GoodmanJ W. Speckle Phenomena in Optics: Theory and Application, 2007, Colorado, Roberts Company
[20]
PopoffS M, LeroseyG, FinkM, BoccaraA C, GiganS. New Journal of Physics, 2011, 13: 123021
CrossRef Google scholar
[21]
ShaoX P, WuT F, GongC M. Optical Engineering, 2014, 52: 113104
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61178015 and 11304104).

Accesses

Citations

Detail

Sections
Recommended

/