Synthesis and characterization of Cu2ZnSnS4 from Cu2SnS3 and ZnS compounds

Shi-na Li , Rui-xin Ma , Dong-ran Li , Fan Yang , Xiao-yong Zhang , Xiang Li , Hong-min Zhu

Optoelectronics Letters ›› : 277 -280.

PDF
Optoelectronics Letters ›› : 277 -280. DOI: 10.1007/s11801-015-5049-3
Article

Synthesis and characterization of Cu2ZnSnS4 from Cu2SnS3 and ZnS compounds

Author information +
History +
PDF

Abstract

The Cu2ZnSnS4 (CZTS) powders are successfully synthesized by using ZnS and Cu2SnS3 as raw materials directly without any intermediate phase at 450 °C for 3 h in Ar atmosphere. The crystalline structure, morphology and optical properties of the CZTS powders are characterized by X-ray diffraction (XRD), Raman spectrum, field emission scanning electron microscopy (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer, respectively. The results show that the band gap of the obtained CZTS is 1.53 eV. The CZTS film is fabricated by spin coating a mixture of CZTS powders and novolac resin with a weight percentage of 30%. The photoelectrical properties of such CZTS films are measured, and the results show an incident light density of 100 mW·cm−2 with the bias voltage of 0.40 V, and the photocurrent density can approach 9.80×10−5 A·cm2 within 50 s, giving an on/off switching ratio of 1.64.

Keywords

Photocurrent Density / Standard Card / Novolac Resin / CZTS Thin Film / CZTS Film

Cite this article

Download citation ▾
Shi-na Li, Rui-xin Ma, Dong-ran Li, Fan Yang, Xiao-yong Zhang, Xiang Li, Hong-min Zhu. Synthesis and characterization of Cu2ZnSnS4 from Cu2SnS3 and ZnS compounds. Optoelectronics Letters 277-280 DOI:10.1007/s11801-015-5049-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GuoW, XueY-m, ZhangX-f, FengS-j, ZhangL-l, SunY. Journal of Optoelectronics·Laser, 2013, 24: 1936

[2]

JacksonP, HariskosD, WuerzR, WischmannW, PowallaM. Physica Status Solidi-Rapid Research Letters, 2014, 8: 219

[3]

LeitãoJ P, SantosN M, FernandesP A, SaloméP M P, da CunhaA F, GonzálezJ C, MatinagaF M. Thin Solid Films, 2011, 519: 7390

[4]

SuehiroS, HoritaK, KumamotoK, YuasaM, TanakaT, FujitaK, KidaT. The Journal of Physical Chemistry C, 2014, 118: 804

[5]

ZouY, SuX, JiangJ. Journal of the American Chemical Society, 2013, 135: 18377

[6]

OishiK, SaitoG, EbinaK, NagahashiM, JimboK, MawW S, KatagiriH, YamazakiM, ArakiH, TakeuchiA. Thin Solid Films, 2008, 517: 1449

[7]

ZhouW H, ZhouY L, FengJ, ZhangJ W, WuS X, GuoX C, CaoX. Chemical Physics Letters, 2012, 546: 115

[8]

XieW, JiangX, ZouC, LiD, ZhangJ, QuanJ, ShaoL. Physica E: Low-dimensional Systems and Nanostructures, 2012, 45: 16

[9]

WeiM, DuQ, WangD, LiuW, JiangG, ZhuC. Materials Letters, 2012, 79: 177

[10]

RihaS C, FredrickS J, SamburJ B, LiuY, PrietoA L, ParkinsonB A. ACS Applied Materials & Interfaces, 2011, 3: 58

[11]

ShinS W, HanJ H, ParkC Y, KimS R, ParkY C, AgawaneG L, KimJ H. Journal of Alloys and Compounds, 2012, 541: 192

[12]

KumarR S, RyuB D, ChandramohanS, SeolJ K, LeeS-K, HongC-H. Materials Letters, 2012, 86: 174

[13]

TanakaK, FukuiY, MoritakeN, UchikiH. Solar Energy Materials and Solar Cells, 2011, 95: 2855

[14]

MaedaK, TanakaK, NakanoY, UchikiH. Japanese Journal of Applied Physics, 2011, 50: 5

[15]

MuskaK, KaukM, AltosaarM, PilvetM, GrossbergM, VolobujevaO. Energy Procedia, 2011, 10: 203

[16]

LiW, HanX X, ZhaoY, LiuL, WangJ Q, YangS R, TanakaT. Materials Letters, 2014, 125: 167

[17]

ShiL, PeiC, XuY, LiQ. Journal of the American Chemical Society, 2011, 133: 10328

[18]

FernandesP A, SalomeP M P, CunhaA F. Journal of Alloys and Compounds, 2011, 509: 7600

[19]

ZhouY L, ZhouW H, LiM, DuY F, WuS X. Journal of Physical Chemistry C, 2011, 115: 19632

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/