Study on optical nonlinearity and optical limiting property of porphyrin-oxygenated carbon nanomaterial blends

Hao Wen , Xiao-liang Zhang , Zhi-bo Liu , Xiao-qing Yan , Xiao-chun Li , Jian-guo Tian

Optoelectronics Letters ›› : 161 -165.

PDF
Optoelectronics Letters ›› : 161 -165. DOI: 10.1007/s11801-015-5047-5
Article

Study on optical nonlinearity and optical limiting property of porphyrin-oxygenated carbon nanomaterial blends

Author information +
History +
PDF

Abstract

Stable porphyrin-oxygenated carbon nanomaterial dispersions were prepared by blending porphyrin solutions with hydroxyl groups modified multi-walled carbon nanotubes (MWNTs-OH) and graphene oxide (GO) dispersions, respectively. Optical nonlinearity and optical limiting (OL) property of these blends are investigated in nanosecond regime. Results show that the OL performance of the blends can be tuned by changing the concentrations ratio of porphyrin and oxygenated carbon nanomaterials. The high concentration of oxygenated carbon nanomaterial leads to the poor OL performance. However, with the moderate concentration, the blends exhibit the low threshold value of OL and the enhanced OL performance at high fluence region. The superior OL performance can be attributed to complementary mechanisms and possible photoinduced electron or energy transfer between porphyrin moiety and oxygenated carbon nanomaterials.

Keywords

Graphene Oxide / Porphyrin / Optical Limit / Reverse Saturable Absorption / Chemical Physic Letter

Cite this article

Download citation ▾
Hao Wen, Xiao-liang Zhang, Zhi-bo Liu, Xiao-qing Yan, Xiao-chun Li, Jian-guo Tian. Study on optical nonlinearity and optical limiting property of porphyrin-oxygenated carbon nanomaterial blends. Optoelectronics Letters 161-165 DOI:10.1007/s11801-015-5047-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AloukosP, PapagiannouliI, BourlinosA B, ZborilR, CourisS. Optics Express, 2014, 22: 12013

[2]

WangM H, ZhuG P, ZhuH Q, JuY F, JiR D, FuL H. Optoelectronics Letters, 2014, 10: 1

[3]

ZhangX L, ChenX D, LiX C, YingC F, LiuZ B, TianJ G. Journal of Optics, 2013, 15: 055206

[4]

JiangK, XieJ J, ZhangL M, LiD J, XieJ J, YuryA. Journal of Optoelectronics·Laser, 2013, 24: 903

[5]

QinT, LiuH B, DengX X, ZhengX W. Journal of Optoelectronics·Laser, 2014, 25: 1466

[6]

MhuircheartaighÉ M M N, GiordaniS, BlauW J. The Journal of Physical Chemistry B, 2006, 110: 23136

[7]

SunX, YuR Q, XuG Q, HorT S A, JiW. Applied Physics Letters, 1998, 73: 3632

[8]

WangJ, HernandezY, LotyaM, ColemanJ N, BlauW J. Advanced Materials, 2009, 21: 2430

[9]

WangJ, BlauW J. Chemical Physics Letters, 2008, 465: 265

[10]

ZhaoX, YanX Q, MaQ, YaoJ, ZhangX L, LiuZ B, TianJ G. Chemical Physics Letters, 2013, 577: 62

[11]

WangA J, LongL L, ZhaoW, SongY L, HumphreyM G, CifuentesM P, WuX Z, FuY S, ZhangD D, LiX F, ZhangC. Carbon, 2013, 53: 327

[12]

LiuZ B, GuoZ, ZhangX L, ZhengJ Y, TianJ G. Carbon, 2013, 51: 419

[13]

WangQ, QinY J, ZhuY J, HuangX, TianY X, ZhangP, GuoZ X, WangY L. Chemical Physics Letters, 2008, 457: 159

[14]

LiarosN, AloukosP, Kolokithas-NtoukasA, BakandritsosA, SzaboT, ZborilR, CourisS. The Journal of Physical Chemistry C, 2013, 117: 6842

[15]

ZhangX L, LiuZ B, YanX Q, LiX C, ChenY S, TianJ G. Journal of Optics, 2015, 17: 015501

[16]

BecerrilH A, MaoJ, LiuZ F, StoltenbergR M, BaoZ N, ChenY S. ACS Nano, 2008, 2: 463

[17]

Sheik-BahaeM, SaidA A, WeiT H, HaganD J, Van StrylandE W. IEEE Journal of Quantum Electron, 1990, 26: 760

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/