High-performance Ge p-i-n photodetector on Si substrate

Li-qun Chen , Xiang-ying Huang , Min Li , Yan-hua Huang , Yue-yun Wang , Guang-ming Yan , Cheng Li

Optoelectronics Letters ›› : 195 -198.

PDF
Optoelectronics Letters ›› : 195 -198. DOI: 10.1007/s11801-015-5044-8
Article

High-performance Ge p-i-n photodetector on Si substrate

Author information +
History +
PDF

Abstract

High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epitaxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low temperature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 μm is about 2.5×10−7 μA at the bias voltage of −1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.

Keywords

Apply Physic Letter / Reverse Bias Voltage / Dark Current Density / Inductively Couple Plasma Etching / Grade Buffer Layer

Cite this article

Download citation ▾
Li-qun Chen,Xiang-ying Huang,Min Li,Yan-hua Huang,Yue-yun Wang,Guang-ming Yan,Cheng Li. High-performance Ge p-i-n photodetector on Si substrate. Optoelectronics Letters 195-198 DOI:10.1007/s11801-015-5044-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CaoY, ZhangJ-j, LiT-w, HuangZ-h, MaJ, YangX, NiJ, GengX-h, ZhaoY. Journal of Optoelectronics·Laser, 2013, 24: 924

[2]

ShiX-f, ChengX, ChenC, LiJ-f, YanH-p, PanJ-b, FanC-c. Journal of Optoelectronics·Laser, 2013, 24: 2086

[3]

ThomasS G, BharatanS, JonesR E, ThomaR, ZirkleT, EdwardsN V, LiuR, WangX D, XieQ H, RosenbladC, RammJ, IsellaG, KänelH V. Journal of Electronic Materials, 2003, 32: 976

[4]

ChoiD, GeY, HarrisJ S, CagnonJ, StemmerS. Journal of Crystal Growth, 2008, 310: 4273

[5]

YamamotoY, ZaumseilP, ArguirovT, KittlerM, TillackB. Solid-State Electronics, 2011, 60: 2

[6]

LiuZ, HaoX, Ho-BaillieA, TsaoC Y, GreenM A. Thin Solid Films, 2015, 574: 99

[7]

VivienL, PolzerA, Marris-MoriniD, OsmondJ, HartmannJ M, CrozatP, CassanE, KoppC, ZimmermannH, FédéliJ M. Optics Express, 2012, 20: 1096

[8]

VivienL, OsmondJ, FédéliJ M, Marris-MoriniD, CrozatP, DamlencourtJ F, CassanE, LecunffY, LavalS. Optics Express, 2009, 17: 6252

[9]

ParkS B, TakitaS, IshikawaY, OsakaJ, WadaK. Chinese Optics Letters, 2009, 7: 286

[10]

SamavedamS B, CurrieM T, LangdoT A, FitzgeraldE A. Applied Physics Letters, 1998, 73: 2125

[11]

KlingerS, BerrothM, KaschelM, OehmeM, KasperE. IEEE Photonics Technology Letters, 2009, 21: 920

[12]

ChenL, ChenY, LiC. Optoelectronics Letters, 2014, 10: 213

[13]

HuangS, LiC, ChenC, WangC, YanG, LaiH, ChenS. Applied Physics Letters, 2013, 102: 182102

[14]

HuoY, LinH, ChenR, MakarovaM, RongY, LiM, KaminsT I, VuckovicJ, HarrisJ S. Applied Physics Letters, 2011, 98: 011111

PDF

52

Accesses

0

Citation

Detail

Sections
Recommended
[15]

DeenM J, BasuP K. Silicon Photonics: Fundamentals and Devices, 2012, Manhattan, John Wiley & Sons

AI思维导图

/