A multiphase texture segmentation method based on local intensity distribution and Potts model

Jing Wang , Yong-guo Zheng , Zhen-kuan Pan , Wei-zhong Zhang , Guo-dong Wang

Optoelectronics Letters ›› : 307 -312.

PDF
Optoelectronics Letters ›› : 307 -312. DOI: 10.1007/s11801-015-5036-8
Article

A multiphase texture segmentation method based on local intensity distribution and Potts model

Author information +
History +
PDF

Abstract

Because texture images cannot be directly processed by the gray level information of individual pixel, we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel. Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor. A fast numerical scheme based on the split Bregman method is designed to speed up the computational process. The algorithm is efficient, and both the texture descriptor and the characteristic functions can be implemented easily. Experiments using synthetic texture images, real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques. The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.

Keywords

Gray Level / Segmentation Result / Local Binary Pattern / Texture Image / Texture Descriptor

Cite this article

Download citation ▾
Jing Wang, Yong-guo Zheng, Zhen-kuan Pan, Wei-zhong Zhang, Guo-dong Wang. A multiphase texture segmentation method based on local intensity distribution and Potts model. Optoelectronics Letters 307-312 DOI:10.1007/s11801-015-5036-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HanS, TaoW, WuX. Pattern Recognition, 2011, 44: 503

[2]

LiL, JinL H, XuX Y, SongE M. Signal Processing, 2013, 93: 2559

[3]

SiqueiraF R D, SchwartzW R, PedriniH. Neurocomputing, 2013, 120: 336

[4]

HouhouN, ThiranJ P, BressonX. Numerical Mathematics: Theory, Methods and Applications, 2009, 2: 445

[5]

LiuJ, TaiX C, HuangH, HuanZ. Pattern Recognition, 2011, 44: 2093

[6]

OjalaT, PietikäinenM, MäenpääT T. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24: 971

[7]

XuS-p, LiuX-p, LiC-q, HuL-y, YangX-h. Journal of Optoelectronics·Laser, 2013, 24: 990

[8]

WuX-s, ZhuS-s, SunJ-d, FanG-l. Journal of Optoelectronics·Laser, 2014, 25: 1627

[9]

YangY, GuoL, WangT J, TaoW B, ShaoG P, FengQ. Image and Vision Computing, 2014, 32: 87

[10]

LiF, NgM K. Communications in Computational Physics, 2010, 8: 623

[11]

XieX Z, WuJ T, JingM G. Pattern Recognition Letters, 2013, 34: 1230

[12]

ChanT F, VeseL A. IEEE Transactions on Image Processing, 2001, 10: 266

[13]

VeseL A, ChanT F. International Journal of Computer Vision, 2002, 50: 271

[14]

UnserM, EdenM. IEEE Transactions on Systems, Man and Cybernetics, 1990, 20: 804

[15]

GoldsteinT, BressonX, OsherS. Journal of Scientific Computing, 2010, 45: 272

[16]

BrodatzP. Textures: A Photographic Album for Artists and Designers, 1996, New York, Dover Publication

[17]

MartinD, FowlkesC, TalD, MalikJ. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 2: 416

[18]

QuanJ J, WenX B, XuX Q. Applied Mathematics and Computation, 2008, 205: 578

[19]

GaoG, ZhaoL, ZhangJ, ZhouD, HuangJ. Pattern Recognition, 2008, 41: 3035

[20]

HermanG T, CarvalhoB M. Simultaneous Fuzzy Segmentation of Medical Images, Handbook of Biomedical Image Analysis, Springer, 2007, 661

[21]

SavelonasM A, IakovidisD K, MaroulisD. Pattern Recognition Letters, 2008, 29: 1404

[22]

MSTAR Targets T72, BMP2, BTR70, SLICY, Available at: http://www.mbvlab.wpafb.af.mil/public/MBVDATA/, 1997 (Online).

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/