A high quality factor photonic crystal channel-drop filter with a linear gradient microcavity

Chuan-qi Li, Qing-bin Fan, Ye Lu, De-jun Luo, Yi-bu Kong, Dong-chuang Zhang

Optoelectronics Letters ›› , Vol. 11 ›› Issue (3) : 174-178.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (3) : 174-178. DOI: 10.1007/s11801-015-5017-y
Article

A high quality factor photonic crystal channel-drop filter with a linear gradient microcavity

Author information +
History +

Abstract

We design a channel-drop filter (CDF) with a linear gradient microcavity in a two-dimensional (2D) photonic crystal (PC). The model of three-port CDF with reflector is used to achieve high quality factor (Q-factor) and 100% channel-drop efficiency. The research indicates that adjusting the distance between reference plane and reflector can simultaneously influence the Q-factor due to coupling to a bus waveguide and the phase retardation occurring in the round trip between a microcavity and a reflector. The calculation results of 2D finite-difference time-domain (FDTD) method show that the designed filter can achieve the drop efficiency of 96.7% and ultra-high Q-factor with an ultra-small modal volume.

Keywords

Photonic Crystal / Reference Plane / Optic Express / Absorb Boundary Condition / High Quality Factor

Cite this article

Download citation ▾
Chuan-qi Li, Qing-bin Fan, Ye Lu, De-jun Luo, Yi-bu Kong, Dong-chuang Zhang. A high quality factor photonic crystal channel-drop filter with a linear gradient microcavity. Optoelectronics Letters, , 11(3): 174‒178 https://doi.org/10.1007/s11801-015-5017-y

References

[1]
YuanS, WangT-s, MiaoX-f, ZhouX-f, WeiY-z, LiQ-l, SunL-l. Journal of Optoelectronics·Laser, 2013, 24: 874
[2]
PangQ, WangX-c, YangS-m, WangZ-x. Journal of Optoelectronics·Laser, 2013, 24: 2096
[3]
ZhangW, LiuJ, ZhaoW. IEEE Photonics Technology Letters, 2009, 21: 793
CrossRef Google scholar
[4]
RenH, QinY, LiuK, WuZ, HuW, JiangC, JinY. Chinese Optics Letters, 2010, 8: 749
CrossRef Google scholar
[5]
RenC, TianJ, FengS, TaoH, LiuY, RenK, LiZ. Optics Express, 2006, 14: 10014
CrossRef Google scholar
[6]
KanamoriY, TakahashiK, HaneK. Applied Physics Letters, 2009, 95: 171911
CrossRef Google scholar
[7]
MinB, KimandJ, ParkH. Optics Communications, 2005, 237: 59
CrossRef Google scholar
[8]
FanS, VilleneuveP, JoannopoulosJ, HausH. Optics Express, 1998, 3: 4
CrossRef Google scholar
[9]
ShinyaA, MitsugiS, KuramochiE, NotomiM. Optics Express, 2005, 13: 4202
CrossRef Google scholar
[10]
RenH, JiangC, HuW, GaoM, WangJ. Optics Express, 2006, 14: 2446
CrossRef Google scholar
[11]
QiangZ, ZhouW, SorefR. Optics Express, 2007, 15: 1823
CrossRef Google scholar
[12]
KimS, ParkI, LimH. Optics Express, 2004, 12: 5518
CrossRef Google scholar
[13]
FengS, WangY. Chinese Physics B, 2011, 10: 104207
CrossRef Google scholar
[14]
RenH, ZhangJ, QinY, LiJ, GuoS, HuW, JiangC, JinY. Optik, 2013, 124: 1787
CrossRef Google scholar
[15]
TakanoH, AkahaneY, AsanoT, NodaS. Applied Physics Letters, 2004, 84: 2226
CrossRef Google scholar
[16]
YuP, HuT, QiuC, ShenA, QiuH, WangF, JiangX, WangM, YangJ. Chinese Physics Letters, 2013, 30: 034210
CrossRef Google scholar
[17]
ZhangZ, QiuM. Optics Express, 2005, 13: 2596
CrossRef Google scholar

This work has been supported by the Natural Science Foundation of the Higher Education Institutions of Guangxi Province in China (No.201202ZD010).

Accesses

Citations

Detail

Sections
Recommended

/