Sub-micrometer-thick and low-loss Ge20Sb15Se65 rib waveguides for nonlinear optical devices

Jun Li , Fen Chen , Xiang Shen , Shi-xun Dai , Tie-feng Xu , Qiu-hua Nie

Optoelectronics Letters ›› : 203 -206.

PDF
Optoelectronics Letters ›› : 203 -206. DOI: 10.1007/s11801-015-4231-y
Article

Sub-micrometer-thick and low-loss Ge20Sb15Se65 rib waveguides for nonlinear optical devices

Author information +
History +
PDF

Abstract

We report the fabrication and optical properties of sub-micrometer-thick Ge20Sb15Se65 chalcogenide rib waveguides. The radio-frequency (RF) magnetron sputtering method is used to deposit 0.83 μm-thick films. A protective layer of SU-8 is employed to prevent the attack of the alkaline developer, and CHF3 is used as the etching plasma for reactive ion etching (RIE). Finally, the resulted rib waveguides with smooth sidewalls and vertical pattern profiles are rendered. The propagation losses for 4 μm-wide waveguides are measured to be 0.7 dB/cm for transverse electric (TE) modes and 0.68 dB/cm for transverse magnetic (TM) modes at 1 550 nm via the cutback method.

Keywords

Atomic Layer Deposition / Transverse Magnetic / Transverse Electric / Bulk Glass / Transverse Magnetic Mode

Cite this article

Download citation ▾
Jun Li, Fen Chen, Xiang Shen, Shi-xun Dai, Tie-feng Xu, Qiu-hua Nie. Sub-micrometer-thick and low-loss Ge20Sb15Se65 rib waveguides for nonlinear optical devices. Optoelectronics Letters 203-206 DOI:10.1007/s11801-015-4231-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GaiX, HanT, PrasadA, MaddenS, ChoiD-Y, WangR, BullaD, Luther-DaviesB. Optics Express, 2010, 18: 26635

[2]

XuH-j, NieQ-h, WangX-s, HeY-j, WangG-x, DaiS-x, XuT-f, ZhangP-q, ZhangX-h, BrunoB. Journal of Optoelectronics·Laser, 2013, 24: 93

[3]

HeY-j, WangX-s, NieQ-h, ZhangP-q, XuH-j, XuT-f, DaiS-x, ZhangP-q. Journal of Optoelectronics·Laser, 2013, 24: 530

[4]

XuH-j, WangX-s, NieQ-h, ZhuM-m, JiangC, LiaoF-x, ZhangP-q, ZhangP-q, DaiS-x, XuT-f, TaoG-m. Journal of Optoelectronics·Laser, 2014, 25: 1109

[5]

EggletonB J, Luther-DaviesB, RichardsonK. Nature Photonics, 2011, 5: 141

[6]

EggletonB J, VoT D, PantR, SchröderJ, PelusiM D, ChoiD Y, MaddenS J, Luther-DaviesB. Laser & Photonics Reviews, 2012, 6: 97

[7]

ZhangX H, GuimondY, BellecY. Journal of Non-Crystalline Solids, 2003, 326: 519

[8]

LenzG, ZimmermannJ, KatsufujiT, LinesM E, HwangH Y, SpälterS, SlusherR E, CheongS W, SangheraJ S, AggarwalI D. Optics Letters, 2000, 25: 254

[9]

UreñaA, PiarristeguyA, FontanaM, Vigreux-BercoviciC, PradelA, ArcondoB. Journal of Physics and Chemistry of Solids, 2007, 68: 993

[10]

NazabalV, CharpentierF, AdamJ L, NemecP, LhermiteH, Brandily-AnneM L, CharrierJ, GuinJ P, MoréacA. International Journal of Applied Ceramic Technology, 2011, 8: 990

[11]

WeiW H, WangR P, ShenX, FangL, Luther-DaviesB. The Journal of Physical Chemistry C, 2013, 117: 16571

[12]

CharrierJ, BrandilyM L, LhermiteH, MichelK, BureauB, VergerF, NazabalV. Sensors & Actuators B: Chem, 2012, 173: 468

[13]

SchmidtM A, LeiD Y, WondraczekL, NazabalV, MaierS A. Nature Communications, 2012, 3: 1108

[14]

ZhangW, DaiS, ShenX, ChenY, ZhaoS, LinC, ZhangL, BaiJ. Materials Letters, 2013, 98: 42

[15]

ChoiD Y, MaddenS J, BullaD A, RodeA, WangR, Luther-DaviesB. Physica Status Solidi C, 2011, 8: 3183

[16]

ChoiD Y, MaddenS J, RodeA, WangR, Luther-DaviesB. Journal of Applied Physics, 2008, 104: 113305

[17]

ChoiD Y, MaddenS J, BullaD A, WangR, RodeA, Luther-DaviesB. Journal of Applied Physics, 2010, 107: 053106

[18]

TienP K. Applied Optics, 1971, 10: 2395

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/