Enhanced absorption of Ag diamond-type nanoantenna arrays

Zong-heng Yuan , Xiao-nan Li , Ya-dong Guo , Jing Huang

Optoelectronics Letters ›› : 13 -17.

PDF
Optoelectronics Letters ›› : 13 -17. DOI: 10.1007/s11801-015-4219-7
Article

Enhanced absorption of Ag diamond-type nanoantenna arrays

Author information +
History +
PDF

Abstract

The optical metal nanoantenna on thin film solar cell is effective to enhance light absorption. In this paper, the diamond-type Ag nanoantenna arrays are proposed for increasing the efficiency of solar cells by localized surface plasmons resonance (LSPR). The effect of metal nanoantenna on the absorption enhancement is theoretically investigated by the finite difference time domain (FDTD) method. Broadband absorption enhancements in both visible and near-infrared regions are demonstrated in case of solar cell with diamond-type Ag nanoantennas. The spectral response is manipulated by geometrical parameters of the nanoantennas. The maximum enhancement factor of 1.51 for solar cell is obtained. For comparison, the other three nanoantennas are also analyzed. The results show that the solar cell with optimized diamond-type nanoantenna arrays is more efficient in optical absorption.

Keywords

Solar Cell / Localize Surface Plasmon Reso / Silicon Layer / Finite Difference Time Domain / Thin Film Solar Cell

Cite this article

Download citation ▾
Zong-heng Yuan, Xiao-nan Li, Ya-dong Guo, Jing Huang. Enhanced absorption of Ag diamond-type nanoantenna arrays. Optoelectronics Letters 13-17 DOI:10.1007/s11801-015-4219-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LeeY C, TsengS C, ChenH L, YuC C, ChengW L, DuC H, LinC H. Optics Express, 2010, 18: A421

[2]

AtwaterH A, PolmanA. Nature Materials, 2010, 9: 205

[3]

ZengL, YiY, HongC, LiuJ, FengL, DuanX, KimerlinL C. Applied Physics Letters, 2006, 89: 111111

[4]

GaoH-s, WangZ-z, XieY-y, GengZ-x, KanQ, WangC-x, YuanJ, ChenH-d. Journal of Optoelectronics·Laser, 2014, 25: 1338

[5]

WuY, ZhangH-f, FengJ-g, WangL, GuoZ-x, LiuY-y, LiH-y, FengC. Journal of Optoelectronics·Laser, 2014, 25: 96

[6]

ZhangQ, QinW-j, CaoH-q, YangL-y, ZhangF-l, YinS-g. Optoelectronics Letters, 2014, 10: 253

[7]

TokR U, ŞendurK. Optics Letters, 2013, 38: 3119

[8]

CatchpoleK R, PolmanA. Applied Physics Letters, 2008, 93: 191113

[9]

WissertM D, SchellA W, IlinK S, SiegelM, EislerH J. Nanotechnology, 2009, 20: 425203

[10]

ChenH, XiN, WaiK, LaiC, ChenL, FungC K M, LouJ. International Journal of Optics, 2012, 2012: 318104

[11]

WangL, ZhangJ, WuX, JiangY, GongQ. Optics Communications, 2008, 281: 5444

[12]

BiagioniP, HuangJ S, DuòL, FinazziM, HechtB. Physical Review Letters, 2009, 102: 256801

[13]

AlemuN, ChenF. Physica Status Solidi A, 2014, 211: 213

[14]

RockstuhlC, LedererF. Applied Physics Letters, 2009, 94: 213102

[15]

PalikE D. Handbook of Optical Constants of Solids, 1991, Boston, Academic Press

[16]

http://rredc.nrel.Gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.

[17]

NagelJ R, ScarpullaM A. Optics Express, 2010, 18: A139

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/