Enhanced absorption of Ag diamond-type nanoantenna arrays

Zong-heng Yuan, Xiao-nan Li, Ya-dong Guo, Jing Huang

Optoelectronics Letters ›› , Vol. 11 ›› Issue (1) : 13-17.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (1) : 13-17. DOI: 10.1007/s11801-015-4219-7
Article

Enhanced absorption of Ag diamond-type nanoantenna arrays

Author information +
History +

Abstract

The optical metal nanoantenna on thin film solar cell is effective to enhance light absorption. In this paper, the diamond-type Ag nanoantenna arrays are proposed for increasing the efficiency of solar cells by localized surface plasmons resonance (LSPR). The effect of metal nanoantenna on the absorption enhancement is theoretically investigated by the finite difference time domain (FDTD) method. Broadband absorption enhancements in both visible and near-infrared regions are demonstrated in case of solar cell with diamond-type Ag nanoantennas. The spectral response is manipulated by geometrical parameters of the nanoantennas. The maximum enhancement factor of 1.51 for solar cell is obtained. For comparison, the other three nanoantennas are also analyzed. The results show that the solar cell with optimized diamond-type nanoantenna arrays is more efficient in optical absorption.

Keywords

Solar Cell / Localize Surface Plasmon Reso / Silicon Layer / Finite Difference Time Domain / Thin Film Solar Cell

Cite this article

Download citation ▾
Zong-heng Yuan, Xiao-nan Li, Ya-dong Guo, Jing Huang. Enhanced absorption of Ag diamond-type nanoantenna arrays. Optoelectronics Letters, , 11(1): 13‒17 https://doi.org/10.1007/s11801-015-4219-7

References

[1]
LeeY C, TsengS C, ChenH L, YuC C, ChengW L, DuC H, LinC H. Optics Express, 2010, 18: A421
CrossRef Google scholar
[2]
AtwaterH A, PolmanA. Nature Materials, 2010, 9: 205
CrossRef Google scholar
[3]
ZengL, YiY, HongC, LiuJ, FengL, DuanX, KimerlinL C. Applied Physics Letters, 2006, 89: 111111
CrossRef Google scholar
[4]
GaoH-s, WangZ-z, XieY-y, GengZ-x, KanQ, WangC-x, YuanJ, ChenH-d. Journal of Optoelectronics·Laser, 2014, 25: 1338
[5]
WuY, ZhangH-f, FengJ-g, WangL, GuoZ-x, LiuY-y, LiH-y, FengC. Journal of Optoelectronics·Laser, 2014, 25: 96
[6]
ZhangQ, QinW-j, CaoH-q, YangL-y, ZhangF-l, YinS-g. Optoelectronics Letters, 2014, 10: 253
CrossRef Google scholar
[7]
TokR U, ŞendurK. Optics Letters, 2013, 38: 3119
CrossRef Google scholar
[8]
CatchpoleK R, PolmanA. Applied Physics Letters, 2008, 93: 191113
CrossRef Google scholar
[9]
WissertM D, SchellA W, IlinK S, SiegelM, EislerH J. Nanotechnology, 2009, 20: 425203
CrossRef Google scholar
[10]
ChenH, XiN, WaiK, LaiC, ChenL, FungC K M, LouJ. International Journal of Optics, 2012, 2012: 318104
[11]
WangL, ZhangJ, WuX, JiangY, GongQ. Optics Communications, 2008, 281: 5444
CrossRef Google scholar
[12]
BiagioniP, HuangJ S, DuòL, FinazziM, HechtB. Physical Review Letters, 2009, 102: 256801
CrossRef Google scholar
[13]
AlemuN, ChenF. Physica Status Solidi A, 2014, 211: 213
CrossRef Google scholar
[14]
RockstuhlC, LedererF. Applied Physics Letters, 2009, 94: 213102
CrossRef Google scholar
[15]
PalikE D. Handbook of Optical Constants of Solids, 1991, Boston, Academic Press
[16]
[17]
NagelJ R, ScarpullaM A. Optics Express, 2010, 18: A139
CrossRef Google scholar

This work has been supported by the International Scientific and Technological Cooperation Projects of Guizhou Province in China (No.[2011] 7035).

Accesses

Citations

Detail

Sections
Recommended

/