Double balanced differential configuration for high speed InGaAs/InP single photon detector at telecommunication wavelengths

Fu Zheng , Ge Zhu , Xue-feng Liu , Chao Wang , Zhi-bin Sun , Guang-jie Zhai

Optoelectronics Letters ›› : 121 -124.

PDF
Optoelectronics Letters ›› :121 -124. DOI: 10.1007/s11801-015-4213-0
Article

Double balanced differential configuration for high speed InGaAs/InP single photon detector at telecommunication wavelengths

Author information +
History +
PDF

Abstract

In this paper, we present an innovative method of double balanced differential configuration, in which two adjacent single photon avalanche diodes (SPADs) from the same wafer are configured as the first balanced structure, and the output signal from the first balanced stage is subtracted by the attenuated gate driving signal as the second balanced stage. The compact device is cooled down to 236 K to be characterized. At a gate repetition rate of 400 MHz and a 1 550 nm laser repetition rate of 10 MHz, the maximum photon detection efficiency of 13.5% can be achieved. The dark count rate is about 10−4 ns−1 at photon detection efficiency of 10%. The afterpulsing probability decreases with time exponentially. It is shown that this configuration is effective to discriminate the ultra-weak avalanche signal in high speed gating rates.

Keywords

Power Splitter / Dark Count / Single Photon Detector / Laser Repetition Rate / Gate Signal

Cite this article

Download citation ▾
Fu Zheng, Ge Zhu, Xue-feng Liu, Chao Wang, Zhi-bin Sun, Guang-jie Zhai. Double balanced differential configuration for high speed InGaAs/InP single photon detector at telecommunication wavelengths. Optoelectronics Letters 121-124 DOI:10.1007/s11801-015-4213-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MazzilloM, CondorelliG, SanfilippoD, FallicaG, SciaccaE, AuriteS, LombardoS, RiminiE, BellusoM, BillottaS, BonannoG, CampisiA, CosentinoL, FinocchiaroP, MusumeciF, PriviteraS, TudiscoS. Optoelectronics Letters, 2007, 3: 177

[2]

MaH-Q, WangL, LiS, JiaoR-Z, WuL. Optoelectronics Letters, 2012, 8: 318

[3]

ZhangH-Q, ZhouY-Y, ZhouX-J, TianP-G. Optoelectronics Letters, 2013, 9: 389

[4]

FuZ, ChaoW, ZhibinS, GuangjieZ. Journal of Optoelectrnocs·Laser, 2014, 25: 1254

[5]

BethuneD S, RiskW P. IEEE Journal of Quantum Electronics, 2000, 36: 340

[6]

YuanZ, KardynalB, SharpeA, ShieldsA. Applied Physics Letters, 2007, 91: 041114

[7]

ChenX, WuE, WuG, ZengH. Optics Express, 2010, 18: 7010

[8]

NamekataN, SasamoriS, InoueS. Optics Express, 2006, 14: 10043

[9]

BouzidA, NahhasA M, GuedriK. Optics Communications, 2014, 328: 37

[10]

ZhangY, ZhangX, WangS. Optics Letters, 2013, 38: 606

[11]

RestelliA, BienfangJ C, MigdallA L. Applied Physics Letters, 2013, 102: 141104

[12]

PatelK, DynesJ, SharpeA, YuanZ, PentyR, ShieldsA. Electronics Letters, 2012, 48: 111

[13]

JiangM-S, SunS-H, TangG-Z, MaX-C, LiC-Y, LiangL-M. Physical Review A, 2013, 88: 062335

[14]

TosiA, Della FreraA, Bahgat ShehataA, ScarcellaC. Review of Scientific Instruments, 2012, 83: 013104

[15]

WuG, ZhouC, ChenX, ZengH. Optics Communications, 2006, 265: 126

[16]

ZhangY, XieF, YangG, ZhangX, WangS. Microwave and Optical Technology Letters, 2013, 55: 2877

[17]

TomitaA, NakamuraK. Optics Letters, 2002, 27: 1827

[18]

HashimotoH, TomitaA, OkamotoA. Proc. SPIE, 2014, 8997: 899709

[19]

CampbellJ C, WenluS, ZhiwenL, ItzlerM A, XudongJ. IEEE Journal of Quantum Electronics, 2012, 48: 1505

[20]

LuZ, SunW, ZhouQ, CampbellJ, JiangX, ItzlerM A. Optics Express, 2013, 21: 16716

[21]

ItzlerM, Ben-MichaelR, HsuC-F, SlomkowskiK, TosiA, CovaS, ZappaF, IspasoiuR. Journal of Modern Optics, 2007, 54: 283

[22]

ZhangX M, LiangC, LiuG, FanD Y, LangP, SunZ B, MaH Q, ZhangR, LeiM. Journal of Modern Optics, 2013, 60: 983

PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

/