Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties

Xiao-yu Zhang, Shu-long Yuan, Yu-zhen Yuan, Xue Li

Optoelectronics Letters ›› , Vol. 11 ›› Issue (1) : 1-4.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (1) : 1-4. DOI: 10.1007/s11801-015-4203-2
Article

Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties

Author information +
History +

Abstract

In this paper, for improving the photocatalytic efficiency of titania (TiO2) nanoparticles (NPs), AgAu alloy-TiO2 core-shell NPs are fabricated via a sol-gel (SG) process in the presence of AgAu alloy NPs with block copolymer shells as templates. The photocatalytic activities of the AgAu-TiO2 NPs on the photodecomposition of methylene blue (MB) are investigated. The AgAu-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.

Keywords

Methylene Blue / Block Copolymer / Methylene Blue / High Photocatalytic Activity / Galvanic Replacement Reaction

Cite this article

Download citation ▾
Xiao-yu Zhang, Shu-long Yuan, Yu-zhen Yuan, Xue Li. Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties. Optoelectronics Letters, , 11(1): 1‒4 https://doi.org/10.1007/s11801-015-4203-2

References

[1]
SeeryM K, GeorgeR, FlorisP, PillaiS C. Journal of Photochemistry Photobiology A: Chemistry, 2007, 189: 258
CrossRef Google scholar
[2]
GrabowskaE, ZaleskaA, SorguesS, KunstM, EtcheberryA, JustinC C, RemitaH. Journal of Physical Chemistry C, 2013, 117: 1955
CrossRef Google scholar
[3]
HuangR, ZhuA, GongY, ZhangQ, LiuQ. Industrial & Engineering Chemistry Research, 2013, 52: 7432
CrossRef Google scholar
[4]
WodkaD, BielańskaE, SochaR P, WodkaM E, GurgulJ, NowakP, WarszyńskiP, KumakirI. Applied Materials Interfaces, 2010, 7: 1945
CrossRef Google scholar
[5]
GaoH-s, WangZ-z, XieY-y, GengZ-x, KanQ, WangC-x, YuanJ, ChenH-d. Journal of Optoelectronics ·Laser, 2014, 25: 1338
[6]
QiJ-x. Journal of Optoelectronics·Laser, 2014, 25: 282
[7]
SuC, LiuL, ZhangM, ZhangY, ShaoC. Cryst. Eng. Comm., 2012, 14: 3989
CrossRef Google scholar
[8]
WuX-F, SongH-Y, YoonJ-M, YuY-T, ChenY-F. Langmuir, 2009, 25: 6438
CrossRef Google scholar
[9]
LiuH, SunK, ZhaoJ, GuoR, ShenM, CaoX-Y, ZhangG-X, ShiX-Y. Colloids and Surfaces A, 2012, 405: 22
CrossRef Google scholar
[10]
GuoS J, DongS J, WangE. Journal of Physical Chemistry C, 2009, 113: 5485
CrossRef Google scholar
[11]
QuJ L, LiuH, YeF, HuW W, YangJ. International Journal of Hydrogen Energy, 2012, 37: 13191
CrossRef Google scholar
[12]
LiuX, WangA, YangX, ZhangT, MouC-Y, SuD-S, LiJ. Chemistry of Materials, 2009, 21: 410
CrossRef Google scholar
[13]
RaveendranP, FuJ, WallenS L. Green Chemistry, 2006, 8: 34
CrossRef Google scholar
[14]
YuanS, LiX, ZhangX, JiaYFabrication of Au-Ag Bimetallic Nanostructures through the Galvanic Replacement Reaction of Block Copolymer-Stabilized Ag Nanoparticles with HAuCl4Sci. Adv. Mater., 2014,
[15]
WangC, YingJ Y. Chemistry of Materials, 1999, 11: 3113
CrossRef Google scholar
[16]
HoriguchiY, KandaT, TorigoeK, SakaiH, AbeM. Langmuir, 2014, 30: 922
CrossRef Google scholar
[17]
YangY, WenJ, WeiJ, XiongR, ShiJ, PanC. Applied Materials Interfaces, 2013, 5: 6201
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.51173069 and 51473068).

Accesses

Citations

Detail

Sections
Recommended

/