Luminescence and energy transfer of Ce3+-Eu2+ in Ca9Al(PO4)7

Xiang-yu Meng , Xi Jie , Yue-dong Zhang , Di Wang , Ying-bin Wang , Pan-lai Li , Zhi-jun Wang , Li-bin Pang , Shao-jie Gao

Optoelectronics Letters ›› 2015, Vol. 11 ›› Issue (1) : 45 -48.

PDF
Optoelectronics Letters ›› 2015, Vol. 11 ›› Issue (1) : 45 -48. DOI: 10.1007/s11801-015-4198-8
Article

Luminescence and energy transfer of Ce3+-Eu2+ in Ca9Al(PO4)7

Author information +
History +
PDF

Abstract

A series of Ce3+, Eu2+ and Ce3+-Eu2+ doped Ca9Al(PO4)7 phosphors are synthesized by a high temperature solid-state method. Under 291 nm excitation, Ca9Al(PO4)7:Ce3+ has one emission band at 356 nm, which is attributed to 4f05d1→4f1 transition of Ce3+. Under 305 nm excitation, Ca9Al(PO4)7:Eu2+ presents one emission band at 445 nm, which is assigned to 4f65d1→4f7 transition of Eu2+. Energy transfer from Ce3+ to Eu2+ in Ca9Al(PO4)7 is validated and proved to be a resonant type via a quadrupole-quadrupole interaction. Critical distance (Rc) of Ce3+ to Eu2+ in Ca9Al(PO4)7 is calculated to be 1.264 nm. Moreover, the emission intensity of Ca9Al(PO4)7:Ce3+, Eu2+ can be tuned by properly adjusting the relative doping composition of Ce3+/Eu2+.

Keywords

Energy Transfer / Emission Intensity / Critical Distance / Energy Transfer Efficiency / Optoelectronic Letter

Cite this article

Download citation ▾
Xiang-yu Meng, Xi Jie, Yue-dong Zhang, Di Wang, Ying-bin Wang, Pan-lai Li, Zhi-jun Wang, Li-bin Pang, Shao-jie Gao. Luminescence and energy transfer of Ce3+-Eu2+ in Ca9Al(PO4)7. Optoelectronics Letters, 2015, 11(1): 45-48 DOI:10.1007/s11801-015-4198-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiJ, DengJ-c, LuQ-f, WangD-j. Optoelectronics Letters, 2013, 9: 293

[2]

WangQ, CiZ, ZhuG, QueM, XinS, WenY, WangY. ECS Journal of Solid State Science and Technology, 2012, 1: R92

[3]

DaiX-h, LiH-l, PangL-b, GaoS-j. Optoelectronics Letters, 2013, 9: 194

[4]

SunJ, SunY, ZengJ, DuH. Optical Materials, 2013, 35: 1276

[5]

WangZ, LouS, LiP. Journal of Alloys and Compounds, 2014, 586: 536

[6]

HouJ, JiangW, FangY, WangY, YinX, HuangF. ECS Journal of Solid State Science and Technology, 2012, 1: R57

[7]

WangQ, DengD, HuaY, HuangL, WangH, ZhaoS, JiaG, LiC, XuS. Journal of Luminescence, 2012, 132: 434

[8]

FangY, LiL, ChenY, WangH, ZengR. Journal of Luminescence, 2013, 144: 13

[9]

SongX, FuR, AgathopoulosS, HeH, ZhaoX, LiR. Journal of the Electrochemical Society, 2010, 157: J34

[10]

FuR, AgathopoulosS, SongX, ZhaoX, HeH, YuX. Optical Materials, 2010, 33: 99

[11]

SunJ, ZengJ, SunY, DuH. Journal of Alloys and Compounds, 2012, 540: 81

[12]

HuangC-H, LuoL, ChenT-M. Journal of the Electrochemical Society, 2011, 158: J341

[13]

PauloseP I, JoseG, ThomasV, UnnikrishnanN V, WarrierM K R. Journal of Physics and Chemistry of Solids, 2003, 64: 841

[14]

DexterD L, SchulmanJ H. The Journal of Chemical Physics, 1954, 22: 1063

[15]

BlassG. Philips Res. Rep., 1969, 24: 131

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/