A thermally tunable terahertz metamaterial absorber

Wei Zheng, Wei Li, Sheng-jiang Chang

Optoelectronics Letters ›› , Vol. 11 ›› Issue (1) : 18-21.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (1) : 18-21. DOI: 10.1007/s11801-015-4193-0
Article

A thermally tunable terahertz metamaterial absorber

Author information +
History +

Abstract

A thermally tunable terahertz metamaterial absorber (MA) with InSb embedded in a metal-dielectric-metal structure is proposed. The transmission and tuning properties of the proposed metamaterial absorber are analyzed for the temperature ranging from 160 K to 350 K. The simulated results show that the maximum absorption of the absorber is nearly 99.8% at a full-width at half-maximum (FWHM) of 38 GHz, and the absorption frequency can be dynamically tuned from 0.82 THz to 1.02 THz.

Keywords

InSb / Dielectric Layer / Physical Review Letter / Apply Physic Letter / Absorption Frequency

Cite this article

Download citation ▾
Wei Zheng, Wei Li, Sheng-jiang Chang. A thermally tunable terahertz metamaterial absorber. Optoelectronics Letters, , 11(1): 18‒21 https://doi.org/10.1007/s11801-015-4193-0

References

[1]
WangC-h, KuangD-f, ChangS-j, LinL. Optoelectronics Letters, 2013, 9: 266
CrossRef Google scholar
[2]
LiW, ChangS-j, WangX-h, LinL, BaiJ-j. Optoelectronics Letters, 2014, 10: 180
CrossRef Google scholar
[3]
EnkrichC, WegenerM, LindenS, BurgerS, ZschiedrichL, SchmidtF, ZhouJ F, KoschnyTh, SoukoulisC M. Physical Review Letters, 2005, 95: 203901
CrossRef Google scholar
[4]
LandyN I, SajuyigbeS, MockJ J, SmithD R, PadillaW J. Physical Review Letters, 2008, 100: 207402
CrossRef Google scholar
[5]
FangN, LeeH, SunC, ZhangX. Science, 2005, 308: 534
CrossRef Google scholar
[6]
SchurigD, MockJ J, JusticeB J, CummerS A, PendryJ B, StarrA F, SmithD R. Science, 2006, 314: 977
CrossRef Google scholar
[7]
LiuX L, TylerT, StarrT, StarrA F, JokerstN M, PadillaW J. Physical Review Letters, 2011, 107: 45901
CrossRef Google scholar
[8]
WangY, SunT, PaudelT, ZhangY, RenZ, KempaK. Nano Letters, 2012, 12: 440
CrossRef Google scholar
[9]
IwaszczukK, StrikwerdaA C, FanK, ZhangX, AverittR D, JepsenP U. Optics Express, 2012, 20: 635
CrossRef Google scholar
[10]
ShenX P, YangY, ZangT Z, GuJ Q, HanJ G, ZhangW L, CuiT J. Applied Physics Letters, 2012, 101: 154102
CrossRef Google scholar
[11]
TaoH, BinghamC M, StrikwerdaA C, PilonD, ShrekenhamerD, LandyN I, FanK, ZhangX, PadillaW J, AverittR D. Physical Review B, 2008, 78: 241103(R)
CrossRef Google scholar
[12]
ShrekenhamerD, ChenW C, PadillaW J. Physical Review Letters, 2013, 110: 177403
CrossRef Google scholar
[13]
FanF, LiW, GuW-H, WangX-H, ChangS-J. Photonics and Nanostructures-Fundamentals and Applications, 2013, 11: 48
CrossRef Google scholar
[14]
LiW, KuangD, FanF, ChangS, LinL. Applied Optics, 2012, 51: 7098
CrossRef Google scholar
[15]
HoweelsS C, SchlieL A. Applied Physics Letters, 1996, 69: 550
CrossRef Google scholar
[16]
DaiX Y, XiangY J, WenS C, HeH Y. Journal of Applied Physics, 2011, 109: 053104
CrossRef Google scholar
[17]
HaleviP, Ramos-MendietaF. Physical Review Letters, 2000, 85: 1875
CrossRef Google scholar
[18]
HokmabadiM P, WilbertD S, KungP, KimS M. Optics Express, 2013, 21: 16455
CrossRef Google scholar
[19]
SeoM A, ParkH R, KooS M, ParkD J, KangJ H, SuwalO K, ChoiS S, PlankenP C M, ParkG S, ParkN K, ParkQ H, KimD S. Nature Photonics, 2009, 3: 152
CrossRef Google scholar

This work has been supported by the National Basic Research Program of China (No.2014CB339800), the National High Technology Research and Development Program of China (No.2011AA010205), and the National Natural Science Foundation of China (Nos.61171027 and 10904076).

Accesses

Citations

Detail

Sections
Recommended

/