Photoluminescence properties of solid-state Tb3+ doped NaY(MoO4)2

Hai-yan Liu , Kun Zhang , Li-bin Pang , Shao-jie Gao , Zhan-jun Gao , Ping-guang Duan , Zi-cai Zhang , Zhi-jun Wang

Optoelectronics Letters ›› : 451 -454.

PDF
Optoelectronics Letters ›› : 451 -454. DOI: 10.1007/s11801-014-4162-z
Article

Photoluminescence properties of solid-state Tb3+ doped NaY(MoO4)2

Author information +
History +
PDF

Abstract

A series of Tb3+ doped NaY(MoO4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction analysis, and there is no other crystalline phase except NaY(MoO4)2. NaY(MoO4)2:Tb3+ can produce the green emission under 290 nm radiation excitation, and the luminescence emission peak at 545 nm corresponds to the 5D47F5 transition of Tb3+. The emission intensity of Tb3+ in NaY(MoO4)2 is enhanced with the increase of Tb3+ concentration, and there is no concentration quenching effect. The phenomena are proved by the decay curves of Tb3+. Moreover, the Commission International de I’Eclairage (CIE) chromaticity coordinates of NaY(MoO4)2:Tb3+ locate in the green region.

Keywords

Emission Intensity / Decay Curve / Luminescent Property / Scheelite / Green Emission

Cite this article

Download citation ▾
Hai-yan Liu, Kun Zhang, Li-bin Pang, Shao-jie Gao, Zhan-jun Gao, Ping-guang Duan, Zi-cai Zhang, Zhi-jun Wang. Photoluminescence properties of solid-state Tb3+ doped NaY(MoO4)2. Optoelectronics Letters 451-454 DOI:10.1007/s11801-014-4162-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YeS, XiaoF, PanY X, MaY Y, ZhangQ Y. Mater. Sci. Eng. R, 2010, 71: 1

[2]

TianH, SongJ, LuQ-f, WangD-j. Optoelectronics Letters, 2012, 8: 352

[3]

YangJ-J, ChenG-D, DuF-F, LiuQ-L. Chin. Phys. B, 2012, 21: 077802

[4]

LiJ, DengJ-c, LuQ-f, WangD-j. Optoelectronics Letters, 2013, 9: 293

[5]

SunJ, ZhangX, XiaZ, DuH. J. Appl. Phys., 2012, 111: 013101

[6]

WangZ, LiP, YangZ, GuoQ. J. Lumin., 2014, 151: 170

[7]

PangL-b, GaoS-j, GaoZ-j, LiH-l, WangZ-j. Optoelectronics Letters, 2013, 9: 282

[8]

LvW, JiaY, ZhaoQ, W, JiaoM, ShaoB, YouH. J. Phys. Chem. C, 2014, 118: 4649

[9]

DengY, YiS, WangY, XianJ. Opt. Mater., 2014, 36: 1378

[10]

XiaW, WangX, FuZ, ZhouS, ZhangS, JeongJ H. Mater. Res. Bull., 2012, 47: 2535

[11]

WuQ, LiH, XiaW, FuX, FuZ, ZhouS, ZhangS, JeongJ H. J. Electrochem. Soc., 2011, 158: J387

[12]

LiJ, WangJ, ZhangY, ZhangT. J. Crystal Growth, 2013, 381: 61

[13]

WanL, S, SunL, QuX. Opt. Mater., 2014, 36: 628

[14]

ZhangZ-W, ShenX-H, RenY-J, HouW-L, ZhangW-G, WangD-J. Opt. & Laser Technol., 2014, 56: 348

[15]

LiaoJ, ZhouD, YouH, WenH-R, ZhouQ, YangB. Optik-International Journal for Light and Electron Optics, 2013, 124: 1362

[16]

LiG, LiL, LiM, BaoW, SongY, GanS, ZouH, XuX. J. Alloys Compd., 2013, 550: 1

[17]

WangY, LinC, ZhengH, SunD, LiL, ChenB. J. Alloys Compd., 2013, 559: 123

[18]

TangJ, ChengC, ChenY, HuangY. J. Alloys Compd., 2014, 609: 298

[19]

LinH, YanX, WangX. J. Solid State Chem., 2013, 204: 266

[20]

QiaoX, SeoH J. Mater. Lett., 2013, 105: 166

[21]

LuX, YouZ, LiJ, ZhuZ, JiaG, WuB, TuC. J. Lumin., 2007, 126: 63

[22]

WangZ, LiangH, GongM, SuQ. Opt. Mater., 2007, 29: 896

[23]

XuZ, LiC, LiG, ChaiR, PengC, YangD, LinJ. J. Phys. Chem., 2010, 114: 2573

[24]

YangW J, LuoL, ChenT M, WangN S. Chem. Mater., 2005, 17: 3883

[25]

LinC C, LiuR-S. J. Phys. Chem. Lett., 2011, 2: 1268

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/