Supercontinuum generation at 1.55 μm in an all-normal dispersion photonic crystal fiber with high-repetition-rate picosecond pulses

Yong-zhao Xu, Tao Han, Jian-xun Song, Dong-xiong Ling, Hong-tao Li

Optoelectronics Letters ›› , Vol. 10 ›› Issue (6) : 463-466.

Optoelectronics Letters ›› , Vol. 10 ›› Issue (6) : 463-466. DOI: 10.1007/s11801-014-4153-0
Article

Supercontinuum generation at 1.55 μm in an all-normal dispersion photonic crystal fiber with high-repetition-rate picosecond pulses

Author information +
History +

Abstract

We demonstrate the generation of supercontinuum (SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1 552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber (PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking (WB).

Keywords

Wave Breaking / Photonic Crystal Fiber / Picosecond Pulse / Supercontinuum Generation / Coupling Power

Cite this article

Download citation ▾
Yong-zhao Xu, Tao Han, Jian-xun Song, Dong-xiong Ling, Hong-tao Li. Supercontinuum generation at 1.55 μm in an all-normal dispersion photonic crystal fiber with high-repetition-rate picosecond pulses. Optoelectronics Letters, , 10(6): 463‒466 https://doi.org/10.1007/s11801-014-4153-0

References

[1]
DudleyJ M, GentyG, CoenS. Review of Modern Physics, 2006, 78: 1135
CrossRef Google scholar
[2]
SmirnovS V, Ania-CastanonJ D, EllinghamT J, KobtsevS, TuritsynS K. Optical Fiber Technology, 2006, 12: 122
CrossRef Google scholar
[3]
ZhangL, XinX, LiuB, WangY, YuJ, YuC. Optics Express, 2010, 18: 15003
CrossRef Google scholar
[4]
GaoL, HouZ-y, ZhouG-y, XiaC-m, ChenY, TianY-y. Journal of Optoelectronics·Laser, 2014, 25: 887
[5]
HanT-t, LiuY-g, WangZ. Journal of Optoelectronics·Laser, 2012, 23: 215
[6]
LangW-y, DaiB, TangD-L. Journal of Optoelectronics·Laser, 2013, 24: 1268
[7]
IslamM N, SuchaG, Bar-JosephI, WegenerM, GordonJ P, ChemlaD S. Journal of the Optical Society of America B, 1989, 6: 1149
CrossRef Google scholar
[8]
HerrmannJ, GriebnerU, ZhavoronkovN, HusakouA, NickelD, KnightJ C, WadsworthW J, RussellP St J, KornG. Physical Review Letters, 2002, 88: 1739011
CrossRef Google scholar
[9]
CorwinK L, NewburyN R, DudleyJ M, CoenS, DiddamsS A, WashburnB R, WeberK, WindelerR S. Applied Physics B, 2003, 77: 269
CrossRef Google scholar
[10]
DudleyJ M, CoenS. Optics Letters, 2002, 27: 1180
CrossRef Google scholar
[11]
HeidtA M. Journal of the Optical Society of America B, 2010, 27: 550
CrossRef Google scholar
[12]
HooperL E, MosleyP J, MuirA C, WadsworthW J, KnightJ C. Optics Express, 2011, 19: 4902
CrossRef Google scholar
[13]
AgrawalG P. Nonlinear Fiber Optics, 2001, 3rd ed
[14]
TomlinsonW J, StolenR H, JohnsonA M. Optics Letters, 1985, 10: 457
CrossRef Google scholar
[15]
FinotC, KiblerB, ProvostL, WabnitzS. Journal of the Optical Society of America B, 2008, 25: 1938
CrossRef Google scholar

This work has been supported by the Guangdong Science and Technology Program (No.2012B090600009), and the Guangdong Natural Science Fund (No.10451170003004948).

Accesses

Citations

Detail

Sections
Recommended

/