Design of XOR/XNOR optical logic circuit with two cascaded microring resonators and U-bend waveguides

Xin Zhang, Zhi-quan Li, Kai Tong

Optoelectronics Letters ›› , Vol. 10 ›› Issue (6) : 415-419.

Optoelectronics Letters ›› , Vol. 10 ›› Issue (6) : 415-419. DOI: 10.1007/s11801-014-4131-6
Article

Design of XOR/XNOR optical logic circuit with two cascaded microring resonators and U-bend waveguides

Author information +
History +

Abstract

An XOR/XNOR optical logic circuit with two cascaded microring resonators and two U-bend waveguides is proposed. The microring resonators are made of electro-optical polymer and modulated through linear electro-optical effect. Two electrical signals are applied to the two microrings, and simultaneous XOR and XNOR operations are demonstrated in two different operating modes. We also use scattering matrix method to analyze the analog output spectra, and find that different inputs like ‘00’ and ‘11’ can lead to different extinction ratios in output spectra at certain wavelengths, even though their digital outputs are the same.

Keywords

Output Port / Logic Gate / Output Intensity / Output Spectrum / Optic Express

Cite this article

Download citation ▾
Xin Zhang, Zhi-quan Li, Kai Tong. Design of XOR/XNOR optical logic circuit with two cascaded microring resonators and U-bend waveguides. Optoelectronics Letters, , 10(6): 415‒419 https://doi.org/10.1007/s11801-014-4131-6

References

[1]
HardyJ, ShamirJ. Optics Express, 2007, 15: 150
CrossRef Google scholar
[2]
CaulfieldH J, DolevS. Nature Photonics, 2010, 4: 261
CrossRef Google scholar
[3]
JalilM A, AmiriI S, TeekaC, AliJ, YupapinP P. Physics Express, 2011, 1: 15
[4]
TianY, ZhangL, JiR, YangL, ZhouP. Optics Letters, 2011, 36: 1650
CrossRef Google scholar
[5]
ZhangL, DingJ, TianY, JiR, YangL. Optics Express, 2012, 20: 11605
CrossRef Google scholar
[6]
ZhangL, JiR, TianY, YangL, ZhouP. Optic Express, 2011, 19: 6524
CrossRef Google scholar
[7]
RakshitJ K, RoyJ N. Optics Communications, 2014, 321: 38
CrossRef Google scholar
[8]
RoyJ N, RakshitJ K. Optics Communications, 2014, 312: 73
CrossRef Google scholar
[9]
AmiriI S, AliJ. Quantum Matter, 2013, 2: 116
CrossRef Google scholar
[10]
RavindraS, DattaA, AlamehK, LeeY T. Optics Express, 2012, 20: 15610
CrossRef Google scholar
[11]
IkeharaH, GotoT, KamiyaH, ArakawaT, KokubunY. Optics Express, 2013, 21: 6377
CrossRef Google scholar
[12]
RenG-H, ChenS-W, CaoT-T. Acta Physica Sinica, 2012, 61: 034215
[13]
YanX, MaC, ChenH, ZhengC, WangX, ZhangD. Acta Opitca Sinica, 2009, 29: 2540
CrossRef Google scholar
[14]
FanZ, YunB, HuG, YanY, CuiY. Journal of Optoelectronics·Laser, 2012, 23: 1727
[15]
LiangL, QuL, ZhangL, ZhengC, SunX, WangF, ZhangD. Journal of Optoelectronics·Laser, 2014, 25: 642
[16]
XuL, ZhangW, LiQ, ChanJ, HugoL R, LipsonM, BergmanK. IEEE Photonics Technology Letters, 2012, 24: 473
CrossRef Google scholar
[17]
LuY, FuX, ChuD, WenW, YaoJ. Optics Communications, 2011, 284: 476
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61172044), and the Natural Science Foundation of Hebei Province (No.F2012203204).

Accesses

Citations

Detail

Sections
Recommended

/