SAW filter manufacture and piezoelectric materials evaluation based on printed electronics technology

Xiao-chen Liu, Kun Li, Xiu-wei Xuan, Yang Cao, Jian-fu Teng

Optoelectronics Letters ›› , Vol. 10 ›› Issue (5) : 340-342.

Optoelectronics Letters ›› , Vol. 10 ›› Issue (5) : 340-342. DOI: 10.1007/s11801-014-4117-4
Article

SAW filter manufacture and piezoelectric materials evaluation based on printed electronics technology

Author information +
History +

Abstract

In this paper, the silver nanoparticle ink and ink-jet printing technology are used to manufacture the surface acoustic wave (SAW) filters. The characteristics of three common substrate piezoelectric materials of ST-quartz, Y36°-LiTaO3 and Y128°-LiNbO3 are evaluated. The experimental results show that Y128°-LiNbO3 matches the ink much better than others. The printed SAW filter with Y128°-LiNbO3 as piezoelectric substrate is realized, and its center frequency and bandwidth are 18.4 MHz and 500 kHz, respectively.

Keywords

Surface Acoustic Wave / Apply Physic Letter / Minimum Attenuation / Piezoelectric Substrate / Print Electronic

Cite this article

Download citation ▾
Xiao-chen Liu, Kun Li, Xiu-wei Xuan, Yang Cao, Jian-fu Teng. SAW filter manufacture and piezoelectric materials evaluation based on printed electronics technology. Optoelectronics Letters, , 10(5): 340‒342 https://doi.org/10.1007/s11801-014-4117-4

References

[1]
ParkS K, KimY H, HanJ I, MoonD G, KimW K. IEEE Transactions on Electron Devices, 2002, 49: 2008
CrossRef Google scholar
[2]
SirringhausH, KawaseT, FriendR H, ShimodaT, InbasekaranM, WuW, WooE P. Science, 2000, 290: 2123
CrossRef Google scholar
[3]
SchneiderJ J, HoffmannR C, EngstlerJ, SoffkeO, JaegermannW, IssaninA, KlyszczA. Advanced Materials, 2008, 20: 3383
CrossRef Google scholar
[4]
NohY Y, ChengX Y, SirringhausH, SohnJ I, WellandM E, KangD J. Applied Physics Letters, 2007, 91: 043109
CrossRef Google scholar
[5]
VaillancourtJ, ZhangH Y, VasinajindakawP, XiaH T, LuX J, HanX L, JanzenD C, ShihW S, JonesC S, StroderM, ChenM Y, SubbaramanH, ChenR T, BergerU, RennM. Applied Physics Letters, 2008, 93: 243301
CrossRef Google scholar
[6]
HartingM, ZhangJ, GamotaD R, BrittonD T. Applied Physics Letters, 2009, 94: 193509
CrossRef Google scholar
[7]
ErsmanP A, NilssonD, KawaharaJ, GustafssonG, BerggrenM. Organic Electronics, 2013, 14: 1276
CrossRef Google scholar
[8]
BaegK J, KhimD, KimJ, KimD Y, SungS W, YangB D, NohY Y. IEEE Electron Device Letters, 2013, 34: 126
CrossRef Google scholar
[9]
KawaharaJ, ErsmanP A, NilssonD, KatohK, NakataY, SandbergM, NilssonM, GustafssonG, BerggrenM. Journal of Polymer Science Part B: Polymer Physics, 2013, 51: 265
CrossRef Google scholar
[10]
ErsmanP A, KawaharaJ, BerggrenM. Organic Electronics, 2013, 14: 3371
CrossRef Google scholar
[11]
AnderssonH A, ManuilskiyA, HallerS, HummelgardM, SidenJ, HummelgardC, OlinH, NilssonH E. Nanotechnology, 2014, 25: 4002

This work has been supported by the Project of the Science & Technology Pillar Program of Tianjin (No.12ZCZDJC35500), and the Natural Science Foundation of Tianjin (No.13JCQNJC01300).

Accesses

Citations

Detail

Sections
Recommended

/