A variable coefficient microwave photonic filter based on multi-wavelength fiber laser and Mach-Zehnder interferometer
Ye Cao , Ce Liu , Zheng-rong Tong
Optoelectronics Letters ›› : 401 -405.
A variable coefficient microwave photonic filter based on multi-wavelength fiber laser and Mach-Zehnder interferometer
A microwave photonic filter (MPF) with variable coefficient is proposed and demonstrated, which is constructed by a multi-wavelength fiber laser and Mach-Zehnder interferometer (MZI). Through changing the slope characteristics of Mach-Zehnder interference spectrum adjusted by optical variable delay line (OVDL), the conversion from phase modulation (PM) to intensity modulation (IM) is realized. The multi-wavelength fiber laser with Lyot-Sagnac optical filter has variable wavelength spacing. So the designed filter has a variable number of taps and tap weights. As a result, the tunable range of passband center frequency is 2.6 GHz. The reconfigurability of MPF can be also realized by adjusting the output of fiber laser.
Fiber Laser / Single Mode Fiber / Radio Frequency Signal / Wavelength Spacing / IEEE Photonic Technology Letter
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
/
| 〈 |
|
〉 |