Luminescent properties of Tm3+/ Ho3+ co-doped LiYF4 crystals

Shan-shan Li , Hai-ping Xia , Yan-ming Dong , Li Fu , Xue-mei Gu , Jian-li Zhang , Dong-jie Wang , Hao-chuan Jiang , Bao-jiu Chen

Optoelectronics Letters ›› : 443 -446.

PDF
Optoelectronics Letters ›› : 443 -446. DOI: 10.1007/s11801-014-4089-4
Article

Luminescent properties of Tm3+/ Ho3+ co-doped LiYF4 crystals

Author information +
History +
PDF

Abstract

Ho3+ with various concentrations and Tm3+ with molar concentration of 1.28% are co-doped in LiYF4 (YLF) single crystals. The luminescent properties of the crystals are investigated through emission spectra, emission cross section and decay curves under the excitation of 808 nm. The energy transfer from Tm3+ to Ho3+ and the optimum fluorescence emission of Ho3+ around 2.05 μm are investigated. The emission intensity at 2.05 μm keeps increasing with the molar concentration of Ho3+ improved from 0.50% to 1.51% when the molar concentration of Tm3+ is kept at 1.28%. Moreover, for the co-doped crystals in which the molar concentrations of Tm3+ and Ho3+ are 1.28% and 1.51%, respectively, the maximum emission cross section reaches 0.760×10−20 cm2 and the maximum fluorescence lifetime is 21.98 ms. All the parameters suggest that these materials have more advantages in the future 2.0 μm laser applications.

Keywords

Molar Concentration / Decay Curve / Emission Cross Section / Upconversion Luminescence / Energy Transfer Upconversion

Cite this article

Download citation ▾
Shan-shan Li,Hai-ping Xia,Yan-ming Dong,Li Fu,Xue-mei Gu,Jian-li Zhang,Dong-jie Wang,Hao-chuan Jiang,Bao-jiu Chen. Luminescent properties of Tm3+/ Ho3+ co-doped LiYF4 crystals. Optoelectronics Letters 443-446 DOI:10.1007/s11801-014-4089-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

YangK J, HeineckeD C, KölblC, DekorsyT, ZhaoS Z, ZhengL H, XuJ, ZhaoG J. Optics Express, 2013, 21: 1574

LiM, GuoY, BaiG, TianY, HuL, ZhangJ. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 127: 70

WangX, FanX, GaoS, LiK, HuL. Ceramics International, 2014, 40: 9751

ZhangX L, LiL, ZhengY, WangY Z. Journal of Optical Society of America B, 2009, 26: 2434

FeaverR K, PetersonR D, PowersP E. Optics Express, 2013, 21: 16104

NiuN, HeF, WangL Z, WangL, WangY, GaiS L, YangP P. Journal of Nanoscience and Nanotechnology, 2014, 14: 3509

BrenierA, RubinJ, MoncorgeR, PedriniC. J. Phys. France, 1989, 50: 1463

FangQ, ChenH, XuF, WangS, LiangZ, JiangC. Chinese Optics Letters, 2010, 8: 1071

LiS S, XiaH P, FuL, DongY M, GuX M, ZhangJ L, WangD J, ZhangY P, JiangH C, ChenB J. Chinese Physics B, 2014, 23: 107806

PengB, IzumitaniT. Optical Materials, 1995, 4: 797

WalshB M, BarnesN P, BartoloB D. J. Appl. Phys., 1998, 83: 2772

ÖzenG, LuS S. Optics Communications, 2000, 180: 323

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/