Synthesis of CuInSe2 nanoparticles by phase transformation of In2Se3 via wet chemical process in low temperature

Shi-na Li , Rui-xin Ma , Hong-min Zhu

Optoelectronics Letters ›› : 244 -246.

PDF
Optoelectronics Letters ›› : 244 -246. DOI: 10.1007/s11801-014-4084-9
Article

Synthesis of CuInSe2 nanoparticles by phase transformation of In2Se3 via wet chemical process in low temperature

Author information +
History +
PDF

Abstract

Chalcopyrite-type CuInSe2 nanoparticles are successfully prepared by using In2Se3 nanoparticles as a precursor reacted with copper chloride (CuCl) solution via a phase transformation process in low temperature. The reaction time is a key parameter. After the reaction time increasing from 0.5 h to 8 h, In2Se3 and CuCl react with each other gradually via phase transformation into CuInSe2 without any intermediate phase. The crystalline structure and morphology of the CuInSe2 nanoparticles are characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The diameter of CuInSe2 nanoparticles with good dispersibility ranges from 10 nm to 20 nm. The band gap of the CuInSe2 nanoparticles is 1.04 eV calculated from the ultraviolet-visible (UV-VIS) spectrum.

Keywords

CuCl / CuInSe / Copper Chloride / Field Emission Scanning Electron Microscopy Micrograph / Phase Transformation Process

Cite this article

Download citation ▾
Shi-na Li, Rui-xin Ma, Hong-min Zhu. Synthesis of CuInSe2 nanoparticles by phase transformation of In2Se3 via wet chemical process in low temperature. Optoelectronics Letters 244-246 DOI:10.1007/s11801-014-4084-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GuillemolesJ F, RauU, KronikL, SchockH W, CahenD. Advanced Materials, 1999, 11: 957

[2]

RamanathanK, ContrerasM A, PerkinsC L, AsherS, HasoonF S, KeaneJ, YoungD, RomeroM, MetzgerW, NoufiR, WardJ, DudaA. Progress in Photovoltaics: Research and Applications, 2003, 11: 225

[3]

ZhouF-f, ChenQ-m, ZhuZ-c, NiY, LiZ-q, DouX-m, ZhuangS-l. Journal of Optoelectronics·Laser, 2012, 23: 1925

[4]

ZhouF-f, ChenQ-m, ZhuZ-c, NiY, LiZ-q, DouX-m, ZhuangS-l. Journal of Optoelectronics·Laser, 2012, 23: 1925

[5]

HsiangH I, LuL H, ChangY L, RayD, YenF S. Journal of Alloys and Compounds, 2011, 509: 6950

[6]

WadaT, KinoshitaH, KawataS. Thin Solid Films, 2003, 431–432: 11

[7]

WadaT, KinoshitaH. Journal of Physics and Chemistry of Solids, 2005, 66: 1987

[8]

ZhangL, LiangJ, PengS J, ShiY H, ChenJ. Materials Chemistry and Physics, 2007, 106: 296

[9]

LuW L, FuY S, TsengB H. Journal of Physics and Chemistry of Solids, 2008, 69: 637

[10]

HuH M, DengC H, SunM, ZhangK H, YangM D. Materials Letters, 2011, 65: 617

[11]

BensebaaF, DurandC, AouadouA, ScolesL, DuX M, WangD, PageY L. Journal of Nanoparticle Research, 2009, 12: 1897

[12]

CastroS L, BaileyS G, RaffaelleR P, BangerK K, HeppA F. Chemistry Materials, 2003, 15: 3142

[13]

KooB, PatelR N, KorgelB A. Journal of the American Chemical Society, 2009, 131: 3134

[14]

NairnJ J, ShapiroP J, TwaleyB, PoundsT, von WandruszkaR, FletcherT R, WilliamsM, WangC, NortonM G. Nano Letters, 2006, 6: 1218

[15]

Matthew PanthaniG, AkhavanV, GoodfellowB, SchmidtkeJ P, DunnL, DodabalapurA, BarbaraP F, KorgelB A. Journal of the American Chemical Society, 2008, 130: 16770

[16]

LinP-Y, FuY-S. Materials Letters, 2012, 75: 65

[17]

LinP-Y, FuY-S. Materials Letters, 2012, 75: 65

[18]

FuY-S, LinP-Y. CrystEngComm, 2013, 15: 1454

[19]

FuY-S, LinP-Y. CrystEngComm, 2013, 15: 1454

[20]

LiS N, MaR X, MaC H, HuangK, LiD R, XiaoY Q, HeL W, ZhuH M. Materials Letters, 2013, 101: 51

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/