Influence of growth temperature on crystalline quality and Raman property of InAs0.6P0.4/InP

Xia Liu , Lian-zhen Cao , Hang Song , Hong Jiang

Optoelectronics Letters ›› : 269 -272.

PDF
Optoelectronics Letters ›› :269 -272. DOI: 10.1007/s11801-014-4082-y
Article

Influence of growth temperature on crystalline quality and Raman property of InAs0.6P0.4/InP

Author information +
History +
PDF

Abstract

InAs0.6P0.4 epilayers grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on InP (100) substrate are investigated. The influence of growth temperature on crystalline quality of InAs0.6P0.4 epilayer is characterized by scanning electron microscopy (SEM), Hall measurements, photoluminescence (PL) spectra, and the Raman properties are analyzed by Raman scattering spectrum. The characterization results show that the crystalline quality and Raman property of InAs0.6P0.4 epilayers have close relation to the growth temperature. It indicates that 530 °C is the optimum growth temperature to get good quality and properties of InAs0.6P0.4 epilayers.

Keywords

Growth Temperature / Crystalline Quality / Misfit Dislocation / Metal Organic Chemical Vapor Deposition / Optimum Growth Temperature

Cite this article

Download citation ▾
Xia Liu, Lian-zhen Cao, Hang Song, Hong Jiang. Influence of growth temperature on crystalline quality and Raman property of InAs0.6P0.4/InP. Optoelectronics Letters 269-272 DOI:10.1007/s11801-014-4082-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TranC A, MasutR A, BrenbnerJ L, LeonelliR, GrahamJ T, CovaP. Journal of Crystal Growth, 1992, 124: 596

[2]

BirowosutoM D, YokooA, ZhangG Q, TatenoK, KuramochiE, TaniyamaH, TakiguchiM, NotomiM. Nature Materials, 2014, 13: 279

[3]

LuT J, KimS H, PostigoP A, RegrenyP, SeassalC, SchererA. Electronics Letters, 2013, 49: 1633

[4]

MeekerM A, MagillB A, MerrittT R, mickM B, McCutcheonK, KhodaparastG A, TischlerJ G, McGillS, ChoiS G, PalmstrømC J. Applied Physics Letters, 2013, 102: 222102

[5]

ByunJ S, KimT J, HwangSY, KangY R, ParkJ C, KimY D. Thin Solid Films, 2014, 558: 438

[6]

JiL, LuS L, ZhaoY M, TanM, DongJ R, YangH. Journal of Crystal Growth, 2013, 363: 44

[7]

KimS H, LeeJ K, JeonH S, CallardS, SeassalC, SongK D, ParkH G. Physical Review A, 2013, 88: 023804

[8]

HudaitM K, LinY, AndreC L, SinhaP M, TivarusC A, PelzJ P, WiltD M, RingelS A. Applied Physics Letters, 2003, 82: 3212

[9]

PeopleR, BeanJ C. Applied Physics Letters, 1985, 47: 322

[10]

HudaitM K, LinY, RingelS A. Journal of Applied Physics, 2009, 105: 061643

[11]

TatsuokaY, UemuraM, KitadaT, ShimomuraS, HiyamizuS. Journal of Crystal Growth, 2001, 227–228: 266

[12]

MaZ X, LiQ S, ZhangLC, ZhaoF Z, RenY. Journal of Optoelectronics·Laser, 2012, 23: 819

[13]

ZhengB J, HuW. Journal of Optoelectronics·Laser, 2013, 24: 1942

[14]

WadaM, ArakiS, KudouT, UmezawaT, NakajimaS, UedaT. Applied Physics Letters, 2000, 76: 2722

[15]

GaoW, BergerP R, ErvinM H, PamulapatiJ, LareauR T, SchauerS. Journal of Applied Physics, 1996, 80: 7094

[16]

CarlesR, Saint-CricqN, RenucciJ B, NicholasR J. J. Phys. C: Solid State Phys., 1980, 13: 899

[17]

JainK P, SoniR K, AbbiS C, BalkanskiM. Physical Review B, 1985, 32: 100

[18]

SayariA, YahyaouiN, MeftahA, SfaxiA, OueslatiM. Journal of Luminescence, 2009, 129: 105

[19]

WuS D, GuoLW, LiZ H, ShangX Z, WangW X, HuangQ, ZhouJ M. Journal of Crystal Growth, 2005, 277: 21

PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

/