Micro-vibration parameters fast demodulation algorithm and experiment of self-mixing interference

Xiu-lin Wang, Lu Wang, Min-liang Chen, Wen-cai Huang

Optoelectronics Letters ›› , Vol. 10 ›› Issue (4) : 304-307.

Optoelectronics Letters ›› , Vol. 10 ›› Issue (4) : 304-307. DOI: 10.1007/s11801-014-4059-x
Article

Micro-vibration parameters fast demodulation algorithm and experiment of self-mixing interference

Author information +
History +

Abstract

Self-mixing interference (SMI) technique can be used for measuring vibration, displacement, velocity and absolute distance. In this paper, a simple demodulation algorithm for fast measuring frequency and amplitude of a simple harmonic vibration target is proposed based on the basic theoretical model of self-mixing interference effects. The simulative results show that the error between the vibration parameters which are demodulated by this algorithm and initial settings merely results from the sample rate. Further, the experimental system of self-mixing vibration measurement is built. The experimental results have a good agreement with simulation analyses. The maximum error of frequency demodulation is less than 1 Hz in our experiment.

Keywords

External Object / Reverse Point / Optical Feedback / Vibration Parameter / Vibration Displacement

Cite this article

Download citation ▾
Xiu-lin Wang, Lu Wang, Min-liang Chen, Wen-cai Huang. Micro-vibration parameters fast demodulation algorithm and experiment of self-mixing interference. Optoelectronics Letters, , 10(4): 304‒307 https://doi.org/10.1007/s11801-014-4059-x

References

[1]
OtsukaK, AbeK, KoJ-Y, LimT-S. Optics Letters, 2002, 27: 1339
CrossRef Google scholar
[2]
BesC, PlantierG, BoschT. IEEE Transactions on Instrumentation and Measurement, 2006, 55: 1101
CrossRef Google scholar
[3]
ScaliseL, YuY, GiulianiG, PlantierG, BoschT. IEEE Transactions on Instrumentation and Measurement, 2004, 53: 223
CrossRef Google scholar
[4]
GouauxF, ServagentN, BoschT. Applied Optics, 1998, 37: 6684
CrossRef Google scholar
[5]
YangY, LiX-f, KouK, WangC. Journal of Optoelectronics·Laser, 2013, 24: 1075
[6]
TuckerJ R, RakicA D, O’BrienC J, ZvyaginA V. Applied Optics, 2007, 46: 611
CrossRef Google scholar
[7]
HanD, WangM, ZhouJ. Optics Express, 2006, 14: 3312
CrossRef Google scholar
[8]
FanY L, YuY G, XiJ T, ChicharoJ F. Applied Optics, 2011, 50: 5064
CrossRef Google scholar
[9]
ZhangY, ZhengM, DuX. Chinese Journal of Scientific Instrument, 2012, 33: 1351
[10]
LangR, KobayashiK. IEEE Journal of Quantum Electronics, 1980, 16: 347
CrossRef Google scholar
[11]
WangW M, GrattanK T V, PalmerA W, BoyleW J O. Journal of Lightwave Technology, 1994, 12: 1577
CrossRef Google scholar
[12]
GiulianiG, NorgiaM, DonatiS, BoschT. Journal of Optics A, Pure and Applied Optics, 2002, 4: 283
CrossRef Google scholar
[13]
ZhangY-y, HuW, JianX, XuD-q. Journal of Optoelectronics·Laser, 2013, 24: 1150
[14]
CaiX, LuL, DengJ, HuangY, ZhenS, YuB. Optik, 2013, 124: 932
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61308048), the Natural Science Foundation of Fujian Province (No.2013J01244), and the Li Shangda Foundation in discipline construction (No.C513030).

Accesses

Citations

Detail

Sections
Recommended

/