Luminescence properties of a solid solution typed (Ba,Ca)3MgSi2O8: Eu2+, Mn2+ phosphor with a 660 nmfeatured photosynthetic action spectrum

Jun Song , Liang Sun , Jian Li , Jian Ma , Da-jian Wang

Optoelectronics Letters ›› : 343 -346.

PDF
Optoelectronics Letters ›› : 343 -346. DOI: 10.1007/s11801-014-4055-1
Article

Luminescence properties of a solid solution typed (Ba,Ca)3MgSi2O8: Eu2+, Mn2+ phosphor with a 660 nmfeatured photosynthetic action spectrum

Author information +
History +
PDF

Abstract

A solid-solution-phase Ba1.75Ca1.25MgSi2O8: Eu2+, Mn2+ phosphor in the photosynthetic action spectrum with dual band emissions at 438 nm and 660 nm is fabricated. X-ray diffraction (XRD) confirms the presence of the solid-solution phase. With the supporting information from the diffuse reflection spectrum, a feasible way to obtain higher energy-transfer (ET) efficiency is attained, and the ET efficiency of Eu2+-Mn2+ is enhanced to 76%. The mechanism of this enhancement is owing to variation of the solid solution composition of Ca3MgSi2O8 and Ba3MgSi2O8, which contributes to the extension of the critical distance. Temperature-dependent results show an enhancement which is attributed to Ca. These enhancements show great promise for improving eco-lighting devices.

Keywords

Optoelectronic Letter / Solid Solution Composition / SrZn / Electronic Transition Absorption / Photosynthetic Action Spectrum

Cite this article

Download citation ▾
Jun Song, Liang Sun, Jian Li, Jian Ma, Da-jian Wang. Luminescence properties of a solid solution typed (Ba,Ca)3MgSi2O8: Eu2+, Mn2+ phosphor with a 660 nmfeatured photosynthetic action spectrum. Optoelectronics Letters 343-346 DOI:10.1007/s11801-014-4055-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndreiadisE S, Chavarot-KerlidouM, FontecaveM, ArteroV. Photochemistry Photobiology, 2011, 87: 946

[2]

ZhuaG, WangY, CiZ, LiuB, ShiY, XinS. Journal of Electrochemical Society, 2011, 158: J236

[3]

XueY N, XiaoF, ZhangQ Y. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 78: 1445

[4]

HuangC H, KuoT W, ChenT M. ACS Applied Materials & Interfaces, 2010, 2: 1395

[5]

YangB, ZhangY-p, XuB, XiaH-p. Optoelectronics Letters, 2013, 9: 30

[6]

DaiX-h, LiH-l, PangL-b, GaoS-j. Optoelectronics Letters, 2013, 9: 194

[7]

WangP-y, XiaH-p, PengJ-t, HuH-y, TangL, ZhangY-p, ChenB-j, JiangH-c. Optoelectronics Letters, 2013, 9: 285

[8]

YiL, ZhouL, GongF, LanY, TongZ, SunJ. Materials Science and Engineering: B, 2010, 172: 132

[9]

HuangC-H, WuP-J, LeeJ-F, ChenT-M. Journal of Materials Chemistry, 2011, 21: 10489

[10]

XiaoF, XueY N, MaY Y, ZhangQ Y. Physica B: Condensed Matter, 2010, 405: 891

[11]

YuanS, YangY, ZhangX, TessierF, CheviréF, AdamJ-L, MoineB, ChenG. Optics Letters, 2008, 33: 2865

[12]

MoonT, HongG Y, LeeH-C, MoonE-A, JeoungB W, HwangS-T, KimJ S, RyuB-G. Electrochemical and Solid-State Letters, 2009, 12: J61

[13]

W, HaoZ, ZhangX, LuoY, WangX, ZhangJ. Inorganic Chemistry, 2011, 50: 7846

[14]

ShangM, LiG, YangD, KangX, PengC, ChengZ, LinJ. Dalton Transactions, 2011, 40: 9379

[15]

LuQ-f, LiaJ, WangD-j. Current Applied Physics, 2013, 13: 1506

[16]

BarryT L. J. Electrochem. Soc: Solid State Science, 1968, 115: 733

[17]

BlasseG, WanmakerW L, TervrugtJ W, BrilA. Philips Res. Repts., 1968, 23: 189

[18]

MaL, WangD, MaoZ, LuQ, ZhaoZ. Applied Physics Letters, 2008, 93: 144101

[19]

ParkC H, HongS T, KeszlerD A. Journal of Solid State Chemistry, 2009, 182: 496

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/