White light emission from Dy3+-doped LiLuF4 single crystal grown by Bridgman method

Yan-ming Dong, Hai-ping Xia, Li Fu, Shan-shan Li, Xue-mei Gu, Jian-li Zhang, Dong-jie Wang, Yue-pin Zhang, Hao-chuan Jiang, Bao-jiu Chen

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (4) : 262-265.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (4) : 262-265. DOI: 10.1007/s11801-014-4052-4
Article

White light emission from Dy3+-doped LiLuF4 single crystal grown by Bridgman method

Author information +
History +

Abstract

Lithium lutetium fluoride (LiLuF4) single crystals doped with different Dy3+ ion concentrations were grown by Bridgman method. The Judd-Ofelt (J-O) strength parameters (Ω2, Ω4, Ω6) of Dy3+ in LiLuF4 crystal are calculated according to the measured absorption spectra and the J-O theory, by which the asymmetry of the Dy3+:LiLuF4 single crystal and the possibility of attaining stimulated emission from 4F9/2 level are analyzed. The capability of the Dy3+:LiLuF4 crystal in generating white light by simultaneous blue and yellow emissions under excitation with ultraviolet light is produced. The effects of excitation wavelength and doping concentration on chromaticity coordinates and photoluminescence intensity are also investigated. Favorable CIE coordinates, x=0.319 3 and y=0.349 3, can be obtained for Dy3+ ion in 2.701% molar doping concentration under excitation of 350 nm.

Keywords

Doping Concentration / Scheelite / Grown Crystal / Bridgman Method / Yellow Emission

Cite this article

Download citation ▾
Yan-ming Dong, Hai-ping Xia, Li Fu, Shan-shan Li, Xue-mei Gu, Jian-li Zhang, Dong-jie Wang, Yue-pin Zhang, Hao-chuan Jiang, Bao-jiu Chen. White light emission from Dy3+-doped LiLuF4 single crystal grown by Bridgman method. Optoelectronics Letters, 2014, 10(4): 262‒265 https://doi.org/10.1007/s11801-014-4052-4

References

[1]
ZhangR, WangX. J. Alloys Compd., 2011, 509: 1197
CrossRef Google scholar
[2]
ZhangJ C, ParentC, le FlemG, HagenmullerP. J. Solid State Chem., 1991, 93: 17
CrossRef Google scholar
[3]
SunX Y, HuangS M, GongX S, GaoQ C, YeZ P, CaoC Y. J. Non-Cryst. Solids, 2010, 356: 98
CrossRef Google scholar
[4]
LinY H, TangZ L, ZhangZ T, ZhangJ Y, ChenQ M. Mater. Sci. Eng. B, 2001, 86: 79
CrossRef Google scholar
[5]
LiuS M, ZhaoG L, LinX H, YingH, LiuJ B, WangJ X, HanG R. J. Solid State Chem., 2008, 181: 2725
CrossRef Google scholar
[6]
TangL, XiaH P, WangP Y, PengJ T, JiangH C. Chin. Opt. Lett., 2013, 11: 061603
CrossRef Google scholar
[7]
JohnsonL F, GuggenheimH J. Appl. Phys. Lett., 1973, 23: 96
CrossRef Google scholar
[8]
XiaH P, WangJ H, ZengX L, ZhangJ L, ZhangY P, XuJ, NieQ H. J. Funct. Mater., 2005, 36: 238
[9]
JayasankarC K, RukminiE. Physica B, 1997, 240: 273
CrossRef Google scholar
[10]
XiongJ, PengH Y, HuP C, HangY, ZhangL H. J. Phys. D: Appl. Phys., 2010, 43: 185402
CrossRef Google scholar
[11]
BigottaS, TonelliM, CavalliE, BellettiA. J. Lumin., 2010, 130: 13
CrossRef Google scholar
[12]
CavalliE, BoveroE, BellettiA. J. Phys. Condens. Matter, 2002, 14: 5221
CrossRef Google scholar
[13]
MacalikL, HanuzaJ, MacalikB, Ryba-RomanowskiW, GolabS, PietraszkoA. J. Lumin., 1998, 79: 9
CrossRef Google scholar
[14]
Martínez VázquezR, OsellameR, MarangoniM, RamponiR, DiéguezE, FerrariM, MattarelliM. J. Phys.: Condens. Matter, 2004, 16: 465

This work has been supported by the National Natural Science Foundation of China (Nos.51272109 and 11374044), the Natural Science Foundation of Ningbo city (No.201401A6105016), and K.C. Wong Magna Fund in Ningbo University.

Accesses

Citations

Detail

Sections
Recommended

/