Synthesis and photoluminescence properties of the 4H-SiC/SiO2 nanowires

Xia Liu , Lian-zhen Cao , Hang Song , Hong Jiang

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 168 -171.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 168 -171. DOI: 10.1007/s11801-014-4049-z
Article

Synthesis and photoluminescence properties of the 4H-SiC/SiO2 nanowires

Author information +
History +
PDF

Abstract

4H-SiC/SiO2 nanowires are synthesized and the temperature-dependent photoluminescence (PL) properties of the nanowires are studied. Their structure and chemical composition are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra. At room temperature, an ultraviolet PL peak and a green PL band are observed. From the PL spectrum measured in the temperature range from 80 K to 300 K, the free excition emission, donor bound excition emission and their multiple-phonon replicas have been observed in ultraviolet region, and their origins have been identified. Moreover, it has been found that the temperature dependence of the free exciton peak position can be described by standard expression, and the thermal activation energy values extracted from the temperature dependence of the free exciton and bound exciton peak integral intensity are about 40 meV and 181 meV, respectively.

Keywords

Free Exciton / Longitudinal Acoustic / Excition Emission / High Power Electronic Device / Prepared Nanowires

Cite this article

Download citation ▾
Xia Liu, Lian-zhen Cao, Hang Song, Hong Jiang. Synthesis and photoluminescence properties of the 4H-SiC/SiO2 nanowires. Optoelectronics Letters, 2014, 10(3): 168-171 DOI:10.1007/s11801-014-4049-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FengX L, MathenyM H, ZormanC A, MehreganyM, RoukesM L. Nano Lett., 2010, 10: 2891

[2]

LeeK M, ChoiT Y, LeeS K, PoulikakosD. Nanotechnology, 2010, 21: 125301

[3]

RyuY W, TakY J, YongK. Nanotechnology, 2005, 16: S370

[4]

DengS Z, LiZ B, WangW L, XuN S, ZhouJ, ZhengX G, XuH T, ChenJ, SheJ C. Appl. Phys. Lett., 2006, 89: 023118

[5]

CaoL Z, JiangH, SongH, LiuX, GuoW G, YuS Z, LiZ M, MiaoG Q. Solid State Commun., 2010, 150: 794

[6]

LiuZ, SrotV, YangJ. Microscopy and Microanalysis, 2011, 17: 1900

[7]

WuC L, LiaoX Z, ChenJ H. Nanotechnology, 2010, 21: 405303

[8]

ShiW S, ZhangY F, PengH Y, WangN, LeeC S, LeeS T. J. Am. Ceram. Soc., 2000, 83: 3228

[9]

LiY B, XieS S, ZouX P, TangD S, LiuZ Q, ZhouW Y, WangG. J. Cryst. Growth, 2001, 223: 125

[10]

LaiH L, WangN B, ZhouX T, PengH Y, AuC K, WangN, BelloI, LeeC S, LeeS T, DuanX F. Appl. Phys. Lett., 2000, 76: 294

[11]

JCPDS Cards: 75-1541.

[12]

ZhangH, XuZ. Thin Solid Films, 2004, 446: 99

[13]

WieligorM, WangY J, ZerdaT W. J. Phys: Condens. Matter, 2005, 17: 2387

[14]

CaoL Z, SongH, JiangH, LuH X, LiY D, ZhaoJ Q. J. Inorg. Organomet. Polym., 2011, 21: 823

[15]

WeiQ, MengG W, AnX H, HaoY F, ZhangL D. Solid State Commun., 2006, 138: 325

[16]

IkedaM, MatsunamiH. Phys. Stat. Sol., 1980, 58: 657

[17]

SonN T, ChenW M, KordinaO, KonstantinovA O, MonemarB, JanzeńE, HofmanD M, VolmD, DrechslerM, MeyerB K. Appl. Phys. Lett., 1995, 66: 1074

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/