Effects of the position of silver nanoprisms on the performance of organic solar cells

Qiang Zhang , Wen-jing Qin , Huan-qi Cao , Li-ying Yang , Feng-ling Zhang , Shou-gen Yin

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (4) : 253 -257.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (4) : 253 -257. DOI: 10.1007/s11801-014-4041-7
Article

Effects of the position of silver nanoprisms on the performance of organic solar cells

Author information +
History +
PDF

Abstract

Silver nanoprisms (AgNPs) affect the performance of organic solar cells (OSCs) in different ways depending on their positions in the device. To investigate this issue, we incorporate AgNPs in different positions of OSCs and compare their performance. The power conversion efficiency (PCE) is improved by 23.60% to 3.98% when the AgNPs are incorporated in front of the active layer. On the other hand, when AgNPs are incorporated in the back of the active layer, the short-circuit current density (JSC) is improved by 17.44% to 10.84 mA/cm2. However, if AgNPs are incorporated in the active layer, both open-circuit voltage (VOC) and JSC are decreased. We discuss the position effect on the device performance, clarify the absorption shadow and exciton recombination caused by AgNPs, and finally indicate that the optimal position of plasmonic AgNPs is in front of the active layer.

Keywords

Active Layer / Control Device / Power Conversion Efficiency / Organic Solar Cell / Layer Number

Cite this article

Download citation ▾
Qiang Zhang, Wen-jing Qin, Huan-qi Cao, Li-ying Yang, Feng-ling Zhang, Shou-gen Yin. Effects of the position of silver nanoprisms on the performance of organic solar cells. Optoelectronics Letters, 2014, 10(4): 253-257 DOI:10.1007/s11801-014-4041-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiM-y, HanX-s, XuX-r, MaC-y, YangL-y, QinW-j, YinS-g, ZhangF-l. Journal of Optoelectronics·Laser, 2013, 24: 1673

[2]

LiW-m, GuoJ-c, ZhouB. Journal of Optoelectronics·Laser, 2012, 23: 1274

[3]

PeiJ-n, TaoJ-l, ZhouY-h, DongQ-f, LiuZ-y, LiZ-f, ChenF-p, ZhangJ-b. Solar Energy Materials and Solar Cells, 2011, 95: 3281

[4]

WangD H, KimDY, ChoiK W, SeoJ H, ImS H, ParkJ H, ParkO O, HeegerA J. Angewandte Chemie, 2011, 50: 5519

[5]

KimC H, ChaS H, KimS C, SongM, LeeJ, ShinW S, MoonS J, BahngJ H, KotovN A, JinS H. ACS Nano, 2011, 5: 3319

[6]

QiaoL-F, WangD, ZuoL-j, YeY-q, QianJ, ChenH-z, HeS-l. Applied Energy, 2011, 88: 848

[7]

AtwaterH A, PolmanA. Nature Materials, 2010, 9: 205

[8]

NohH S, ChoE H, KimH M, HanY D, JooJ. Organic Electronics, 2013, 14: 278

[9]

LiX-h, HoC W C, LuH-f, Sha WeiE I, PuiA H. Advanced Functional Materials, 2013, 23: 2728

[10]

KulkarniA P, NooneK M, MunechikaK, GuyerS R, GingerD S. Nano Letters, 2010, 10: 1501

[11]

AherneD, LedwithD M, GaraM, KellyJ M. Advanced Functional Materials, 2008, 18: 2005

[12]

CardonaC M, LiW, KaiferA E, StockdaleD, BazanG C. Advanced Materials, 2011, 23: 2367

[13]

ChenF-c, WuJ L, LeeC L, HongY, KuoC H, HuangM H. Applied Physics Letters, 2009, 95: 013305

[14]

KimS S, NaS I, JoJ, KimD Y, NahY C. Applied Physics Letters, 2008, 93: 073307

[15]

ParvathyD, WuK C, PeiZ. Solar Energy Materials and Solar Cells, 2011, 95: 2102

[16]

YoonW J, JungK Y, Ji-wenL, DuraisamyT, RevurR, TeixeiraF L, SenguptaS, BergerP R. Solar Energy Materials and Solar Cells, 2010, 94: 128

[17]

WangC-D, ChoyW C H. Solar Energy Materials and Solar Cells, 2011, 95: 904

[18]

ZhangC-l, WangZ-g, LiuC-m, XiangX, YuanX-d, HeS-b, LiL, ZuX-t. Acta Physica Sinica, 2012, 61: 084207

[19]

MaC-Y, QinW-J, XuX-r, LiM-y, HanX-s, WeiJ, YinS-G. Solar Energy Materials and Solar Cells, 2013, 109: 227

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/