Performance of Er3+-doped chalcogenide glass MOF amplifier applied for 1.53 μm band

Yuan-hui Zheng, Ya-xun Zhou, Xing-yan Yu, Ya-wei Qi, Sheng-xi Peng, Li-bo Wu, Feng-jing Yang

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 184-187.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 184-187. DOI: 10.1007/s11801-014-4030-x
Article

Performance of Er3+-doped chalcogenide glass MOF amplifier applied for 1.53 μm band

Author information +
History +

Abstract

A model of Er3+-doped chalcogenide glass (Ga5Ge20Sb10S65) microstructured optical fiber (MOF) amplifier under the excitation of 980 nm is presented to demonstrate the feasibility of it applied for 1.53 μm band optical communications. By solving the Er3+ population rate equations and light power propagation equations, the amplifying performance of 1.53 μm band signals for Er3+-doped chalcogenide glass MOF amplifier is investigated theoretically. The results show that the Er3+-doped chalcogenide glass MOF exhibits a high signal gain and broad gain spectrum, and its maximum gain for small-signal input (−40 dBm) exceeds 22 dB on the 300 cm MOF under the excitation of 200 mW pump power. Moreover, the relations of 1.53 μm signal gain with fiber length, input signal power and pump power are analyzed. The results indicate that the Er3+-doped Ga5Ge20Sb10S65 MOF is a promising gain medium which can be applied to broadband amplifiers operating in the third communication window.

Keywords

Pump Power / Fiber Length / Signal Gain / Chalcogenide Glass / Microstructured Optical Fiber

Cite this article

Download citation ▾
Yuan-hui Zheng, Ya-xun Zhou, Xing-yan Yu, Ya-wei Qi, Sheng-xi Peng, Li-bo Wu, Feng-jing Yang. Performance of Er3+-doped chalcogenide glass MOF amplifier applied for 1.53 μm band. Optoelectronics Letters, 2014, 10(3): 184‒187 https://doi.org/10.1007/s11801-014-4030-x

References

[1]
SinghS, SinghA, KalerR S. Optik-International Journal for Light and Electron Optics, 2013, 124: 95
CrossRef Google scholar
[2]
IsmailM M, OthmanM A, ZakariaZ, MisranM H, SaidM A M, SulaimanH A, ZainudinM N S, MutalibM A. Procedia Engineering, 2013, 53: 294
CrossRef Google scholar
[3]
HsuH Y, YuY L, LiawS K, LiuR Y, ShinC S. Optics & Laser Technology, 2014, 56: 307
CrossRef Google scholar
[4]
MichalskaM, SwiderskiJ, MamajekM. Optics & Laser Technology, 2014, 60: 8
CrossRef Google scholar
[5]
HuseinA H M, El-NahalF I. Optik-International Journal for Light and Electron Optics, 2013, 124: 4052
CrossRef Google scholar
[6]
HuseinA H M, El-NahalF I. Optics Communications, 2010, 283: 409
CrossRef Google scholar
[7]
WeiT, TanZ Y, LiJ F, ZhuJ H. Optik-International Journal for Light and Electron Optics, 2013, 124: 2459
CrossRef Google scholar
[8]
SarioM D, MesciaL, PrudenzanoF, SmektalaF, DesevedayF, NazabalV, TrolesJ, BrillandL. Optica & Laser Technology, 2009, 41: 99
CrossRef Google scholar
[9]
PrudenzanoF, MesciaL, AllegrettiL, SarioM D, SmektalaF, MoizanV, NazabalV, TrolesJ, DoualanJ L, CanatG, AdamJ l, BoulardB. Optical Materials, 2009, 31: 1292
CrossRef Google scholar
[10]
PrudenzanoF, MesciaL, AllegrettiL A, De SarioM, PalmisanoT, SmektalaF, MoizanV, NazabalV, TrolesJ. Journal of Non-Crystalline Solids, 2009, 355: 1145
CrossRef Google scholar
[11]
YiC S, ZhangP Q, DaiS X, WangX S, WuY H, XuT F, NieQ H. Optics Communications, 2013, 311: 270
CrossRef Google scholar
[12]
BrillandL, SmektalaF, RenversezG, CharterT, TrolesJ, NguyenT, TraynorN, MontevilleA. Optics Express, 2006, 14: 1280
CrossRef Google scholar
[13]
BeheraB L, MaityA, VarshneyS K, DattaR. Optics Communications, 2013, 307: 9
CrossRef Google scholar
[14]
ChengT L, AsanoK, DuanZ C, TuanT H, GaoW Q, DengD H, SuzukiT, OhishiY. Optics Communications, 2014, 318: 105
CrossRef Google scholar
[15]
XuD J, SongH R, WangW, FanY, YangB. Optik-International Journal for Light and Electron Optics, 2013, 124: 1290
CrossRef Google scholar
[16]
MinckovichV P, KiryanovA V, SoskyA B, SotskayaL I. Journal of the Optical Society of America B, 2004, 21: 1161
CrossRef Google scholar
[17]
BrechetF, MarcouJ, PagnouxD, RoyP. Optical Fiber and Technology, 2000, 6: 181
CrossRef Google scholar
[18]
KadonoK, YazawaT, JiangS, PorqueJ, HwangB C, PeyghambarianN. Journal of Non-Crystalline Solids, 2003, 331: 79
CrossRef Google scholar
[19]
McCumberD E. Physical Review, 1964, 134: A299
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61177087), the Graduate Innovative Scientific Research Project of Zhejiang Province (No.YK2010048), the Scientific Research Foundation of Graduate School of Ningbo University (No.G13035), and K. C. Wong Magna Fund and Hu Lan Outstanding Doctoral Fund in Ningbo University.

Accesses

Citations

Detail

Sections
Recommended

/