Performance of Er3+-doped chalcogenide glass MOF amplifier applied for 1.53 μm band

Yuan-hui Zheng , Ya-xun Zhou , Xing-yan Yu , Ya-wei Qi , Sheng-xi Peng , Li-bo Wu , Feng-jing Yang

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 184 -187.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 184 -187. DOI: 10.1007/s11801-014-4030-x
Article

Performance of Er3+-doped chalcogenide glass MOF amplifier applied for 1.53 μm band

Author information +
History +
PDF

Abstract

A model of Er3+-doped chalcogenide glass (Ga5Ge20Sb10S65) microstructured optical fiber (MOF) amplifier under the excitation of 980 nm is presented to demonstrate the feasibility of it applied for 1.53 μm band optical communications. By solving the Er3+ population rate equations and light power propagation equations, the amplifying performance of 1.53 μm band signals for Er3+-doped chalcogenide glass MOF amplifier is investigated theoretically. The results show that the Er3+-doped chalcogenide glass MOF exhibits a high signal gain and broad gain spectrum, and its maximum gain for small-signal input (−40 dBm) exceeds 22 dB on the 300 cm MOF under the excitation of 200 mW pump power. Moreover, the relations of 1.53 μm signal gain with fiber length, input signal power and pump power are analyzed. The results indicate that the Er3+-doped Ga5Ge20Sb10S65 MOF is a promising gain medium which can be applied to broadband amplifiers operating in the third communication window.

Keywords

Pump Power / Fiber Length / Signal Gain / Chalcogenide Glass / Microstructured Optical Fiber

Cite this article

Download citation ▾
Yuan-hui Zheng, Ya-xun Zhou, Xing-yan Yu, Ya-wei Qi, Sheng-xi Peng, Li-bo Wu, Feng-jing Yang. Performance of Er3+-doped chalcogenide glass MOF amplifier applied for 1.53 μm band. Optoelectronics Letters, 2014, 10(3): 184-187 DOI:10.1007/s11801-014-4030-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SinghS, SinghA, KalerR S. Optik-International Journal for Light and Electron Optics, 2013, 124: 95

[2]

IsmailM M, OthmanM A, ZakariaZ, MisranM H, SaidM A M, SulaimanH A, ZainudinM N S, MutalibM A. Procedia Engineering, 2013, 53: 294

[3]

HsuH Y, YuY L, LiawS K, LiuR Y, ShinC S. Optics & Laser Technology, 2014, 56: 307

[4]

MichalskaM, SwiderskiJ, MamajekM. Optics & Laser Technology, 2014, 60: 8

[5]

HuseinA H M, El-NahalF I. Optik-International Journal for Light and Electron Optics, 2013, 124: 4052

[6]

HuseinA H M, El-NahalF I. Optics Communications, 2010, 283: 409

[7]

WeiT, TanZ Y, LiJ F, ZhuJ H. Optik-International Journal for Light and Electron Optics, 2013, 124: 2459

[8]

SarioM D, MesciaL, PrudenzanoF, SmektalaF, DesevedayF, NazabalV, TrolesJ, BrillandL. Optica & Laser Technology, 2009, 41: 99

[9]

PrudenzanoF, MesciaL, AllegrettiL, SarioM D, SmektalaF, MoizanV, NazabalV, TrolesJ, DoualanJ L, CanatG, AdamJ l, BoulardB. Optical Materials, 2009, 31: 1292

[10]

PrudenzanoF, MesciaL, AllegrettiL A, De SarioM, PalmisanoT, SmektalaF, MoizanV, NazabalV, TrolesJ. Journal of Non-Crystalline Solids, 2009, 355: 1145

[11]

YiC S, ZhangP Q, DaiS X, WangX S, WuY H, XuT F, NieQ H. Optics Communications, 2013, 311: 270

[12]

BrillandL, SmektalaF, RenversezG, CharterT, TrolesJ, NguyenT, TraynorN, MontevilleA. Optics Express, 2006, 14: 1280

[13]

BeheraB L, MaityA, VarshneyS K, DattaR. Optics Communications, 2013, 307: 9

[14]

ChengT L, AsanoK, DuanZ C, TuanT H, GaoW Q, DengD H, SuzukiT, OhishiY. Optics Communications, 2014, 318: 105

[15]

XuD J, SongH R, WangW, FanY, YangB. Optik-International Journal for Light and Electron Optics, 2013, 124: 1290

[16]

MinckovichV P, KiryanovA V, SoskyA B, SotskayaL I. Journal of the Optical Society of America B, 2004, 21: 1161

[17]

BrechetF, MarcouJ, PagnouxD, RoyP. Optical Fiber and Technology, 2000, 6: 181

[18]

KadonoK, YazawaT, JiangS, PorqueJ, HwangB C, PeyghambarianN. Journal of Non-Crystalline Solids, 2003, 331: 79

[19]

McCumberD E. Physical Review, 1964, 134: A299

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/