Effect of SiO2 on the thermal stability and spectroscopic properties of Er3+-doped tellurite glasses

Shi-chao Zheng, Ya-xun Zhou

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 209-212.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 209-212. DOI: 10.1007/s11801-014-4016-8
Article

Effect of SiO2 on the thermal stability and spectroscopic properties of Er3+-doped tellurite glasses

Author information +
History +

Abstract

Er3+-doped tellurite glass (TeO2-ZnO-Na2O) prepared using the conventional melt-quenching method is modified by introducing the SiO2, and its effects on the thermal stability of glass host and the 1.53 μm band spectroscopic properties of Er3+ are investigated by measuring the absorption spectra, 1.53 μm band fluorescence spectra, Raman spectra and differential scanning calorimeter (DSC) curves. It is found that for Er3+-doped tellurite glass, besides improving its thermal stability, introducing SiO2 is helpful for the further improvement of the fluorescence full width at half maximum (FWHM) and bandwidth quality factor. The results indicate that the prepared Er3+-doped tellurite glass containing an appropriate amount of SiO2 has good prospect as a candidate of gain medium applied for 1.53 μm broadband amplifier.

Keywords

Glass Sample / Differential Scanning Calorimeter Curve / Tellurite Glass / Glass Host / Broadband Amplifier

Cite this article

Download citation ▾
Shi-chao Zheng, Ya-xun Zhou. Effect of SiO2 on the thermal stability and spectroscopic properties of Er3+-doped tellurite glasses. Optoelectronics Letters, 2014, 10(3): 209‒212 https://doi.org/10.1007/s11801-014-4016-8

References

[1]
El-MallawanyR, PatraA, FriendC S, KapoorR, PrasadP N. Opt. Mater., 2004, 26: 267
CrossRef Google scholar
[2]
WangS, ZhouY X, DaiS X, WangX S, ShenX, WuY, XuX C. Journal of Optoelectronics·Laser, 2011, 22: 12
[3]
SasikalaT, RamaM L, PavaniK, ChengaiahT. J. Alloy Compd., 2012, 542: 271
CrossRef Google scholar
[4]
ZhouY X, XuX C, ChenF, LinJ H, YangG B. Optoelectronics Letters, 2012, 8: 273
CrossRef Google scholar
[5]
XuT F, ZhangX D, DaiS X, NieQ H, ShenX, ZhangX H. Physica B, 2007, 389: 242
CrossRef Google scholar
[6]
OkunoM, ReynardB, ShimadaY, SyonoY, WillaimeC. Phys. Chem. Minerals, 1999, 26: 304
CrossRef Google scholar
[7]
JuddB R. Phys. Rev., 1962, 127: 750
CrossRef Google scholar
[8]
OfeltG S. J. Chem. Phys., 1962, 37: 511
CrossRef Google scholar
[9]
TanabeS, OhyagiT, SogaN, HanadaT. Phys. Rev. B, 1992, 46: 3305
CrossRef Google scholar
[10]
TanabeS. J. Non-Cryst. Solids, 1999, 259: 1
CrossRef Google scholar
[11]
WeberM J. Phys. Rev., 1967, 157: 262
CrossRef Google scholar
[12]
QiuJ, ShimizugawaY, IwabuchiY, HiraoK. Appl. Phys. Lett., 1997, 71: 43
CrossRef Google scholar
[13]
ZhengS C, QiY W, PengS X, YinD D, ZhouY X, DaiS X. Optoelectronics Letters, 2013, 9: 0461
CrossRef Google scholar
[14]
WangJ S, VogelE M, SnitzerE. Opt. Mater., 1994, 3: 187
CrossRef Google scholar
[15]
NaftalyM, ShenS, JhaA. Appl. Opt., 2000, 39: 4979
CrossRef Google scholar
[16]
DaiS X, XuT F, NieQ H, ShenX, ZhangJ J, HuL L. Acta Phys. Sin., 2006, 55: 1479
[17]
McCumberD E. Phys. Rev., 1964, A299: 134
[18]
MiniscalcoW J, QuimbyR S. Opt. Lett., 1991, 16: 258
CrossRef Google scholar
[19]
HwangB C, JiangS, LuoT, SeneschalK, SorbelloG, MorrellM, SmektalaF, HonkanenS, LucasJ, PeyghambarianN. IEEE Photon. Technol. Lett., 2001, 13: 657
CrossRef Google scholar
[20]
LinH, PunE Y B, ManS Q, LiuX R. J. Opt. Soc. Am. B, 2001, 18: 602
CrossRef Google scholar
[21]
RighiniG C, PelliS, FossiM, BrenciM, LipovskiiA A, KolobkovaE V, SpeghiniA, BettinelliM. Proc. SPIE, 2001, 210: 4282

This work has been supported by the National Natural Science Foundation of China (No.61178063), the Graduate Innovative Scientific Research Project of Zhejiang Province (No.YK2010048), the Scientific Research Foundation of Graduate School of Ningbo University (No.G13035), and the K. C. Wong Magna Fund and Hu Lan Outstanding Doctoral Fund in Ningbo University.

Accesses

Citations

Detail

Sections
Recommended

/