Effect of SiO2 on the thermal stability and spectroscopic properties of Er3+-doped tellurite glasses

Shi-chao Zheng , Ya-xun Zhou

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 209 -212.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 209 -212. DOI: 10.1007/s11801-014-4016-8
Article

Effect of SiO2 on the thermal stability and spectroscopic properties of Er3+-doped tellurite glasses

Author information +
History +
PDF

Abstract

Er3+-doped tellurite glass (TeO2-ZnO-Na2O) prepared using the conventional melt-quenching method is modified by introducing the SiO2, and its effects on the thermal stability of glass host and the 1.53 μm band spectroscopic properties of Er3+ are investigated by measuring the absorption spectra, 1.53 μm band fluorescence spectra, Raman spectra and differential scanning calorimeter (DSC) curves. It is found that for Er3+-doped tellurite glass, besides improving its thermal stability, introducing SiO2 is helpful for the further improvement of the fluorescence full width at half maximum (FWHM) and bandwidth quality factor. The results indicate that the prepared Er3+-doped tellurite glass containing an appropriate amount of SiO2 has good prospect as a candidate of gain medium applied for 1.53 μm broadband amplifier.

Keywords

Glass Sample / Differential Scanning Calorimeter Curve / Tellurite Glass / Glass Host / Broadband Amplifier

Cite this article

Download citation ▾
Shi-chao Zheng, Ya-xun Zhou. Effect of SiO2 on the thermal stability and spectroscopic properties of Er3+-doped tellurite glasses. Optoelectronics Letters, 2014, 10(3): 209-212 DOI:10.1007/s11801-014-4016-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-MallawanyR, PatraA, FriendC S, KapoorR, PrasadP N. Opt. Mater., 2004, 26: 267

[2]

WangS, ZhouY X, DaiS X, WangX S, ShenX, WuY, XuX C. Journal of Optoelectronics·Laser, 2011, 22: 12

[3]

SasikalaT, RamaM L, PavaniK, ChengaiahT. J. Alloy Compd., 2012, 542: 271

[4]

ZhouY X, XuX C, ChenF, LinJ H, YangG B. Optoelectronics Letters, 2012, 8: 273

[5]

XuT F, ZhangX D, DaiS X, NieQ H, ShenX, ZhangX H. Physica B, 2007, 389: 242

[6]

OkunoM, ReynardB, ShimadaY, SyonoY, WillaimeC. Phys. Chem. Minerals, 1999, 26: 304

[7]

JuddB R. Phys. Rev., 1962, 127: 750

[8]

OfeltG S. J. Chem. Phys., 1962, 37: 511

[9]

TanabeS, OhyagiT, SogaN, HanadaT. Phys. Rev. B, 1992, 46: 3305

[10]

TanabeS. J. Non-Cryst. Solids, 1999, 259: 1

[11]

WeberM J. Phys. Rev., 1967, 157: 262

[12]

QiuJ, ShimizugawaY, IwabuchiY, HiraoK. Appl. Phys. Lett., 1997, 71: 43

[13]

ZhengS C, QiY W, PengS X, YinD D, ZhouY X, DaiS X. Optoelectronics Letters, 2013, 9: 0461

[14]

WangJ S, VogelE M, SnitzerE. Opt. Mater., 1994, 3: 187

[15]

NaftalyM, ShenS, JhaA. Appl. Opt., 2000, 39: 4979

[16]

DaiS X, XuT F, NieQ H, ShenX, ZhangJ J, HuL L. Acta Phys. Sin., 2006, 55: 1479

[17]

McCumberD E. Phys. Rev., 1964, A299: 134

[18]

MiniscalcoW J, QuimbyR S. Opt. Lett., 1991, 16: 258

[19]

HwangB C, JiangS, LuoT, SeneschalK, SorbelloG, MorrellM, SmektalaF, HonkanenS, LucasJ, PeyghambarianN. IEEE Photon. Technol. Lett., 2001, 13: 657

[20]

LinH, PunE Y B, ManS Q, LiuX R. J. Opt. Soc. Am. B, 2001, 18: 602

[21]

RighiniG C, PelliS, FossiM, BrenciM, LipovskiiA A, KolobkovaE V, SpeghiniA, BettinelliM. Proc. SPIE, 2001, 210: 4282

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/