Optical absorption enhancement of μc-SiGe:H films deposited via high pressure and high power

Tian-wei Li, Jian-jun Zhang, Yu Cao, Zhen-hua Huang, Jun Ma, Jian Ni, Ying Zhao

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 202-205.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 202-205. DOI: 10.1007/s11801-014-4007-9
Article

Optical absorption enhancement of μc-SiGe:H films deposited via high pressure and high power

Author information +
History +

Abstract

Hydrogenated microcrystalline silicon-germanium (μc-SiGe:H) films are fabricated by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The optical absorption coefficient and the photosensitivity of the μc-SiGe:H films increase dramatically by increasing the plasma power and deposition pressure simultaneously. Additionally, the microstructural properties of the μc-SiGe:H films are also studied. By combining Raman, Fourier transform infrared (FTIR) and X-ray fluoroscopy (XRF) measurements, it is shown that the Ge-bonding configuration and compactability of the μc-SiGe:H thin films play a crucial role in enhancing the optical absorption and optimizing the quality of the films via a significant reduction in the defect density.

Keywords

Optical Absorption / Defect Density / Plasma Power / Deposition Pressure / Silane Molecule

Cite this article

Download citation ▾
Tian-wei Li, Jian-jun Zhang, Yu Cao, Zhen-hua Huang, Jun Ma, Jian Ni, Ying Zhao. Optical absorption enhancement of μc-SiGe:H films deposited via high pressure and high power. Optoelectronics Letters, 2014, 10(3): 202‒205 https://doi.org/10.1007/s11801-014-4007-9

References

[1]
MatsuiT, KondoM, OgataK, OzawaT, IsomuraM. Appl. Phys. Lett., 2006, 89: 142115
CrossRef Google scholar
[2]
GangulyG, IkedaT, NishimiyaT, SaitohK, KondoM, MatsudaA. Appl. Phys. Lett., 1996, 69: 4224
CrossRef Google scholar
[3]
IsomuraM, NakahataK, ShimaM, TairaS, WakisakaK, TanakaM, KiyamaS. Solar Energy Materials and Solar Cells, 2002, 74: 519
CrossRef Google scholar
[4]
YuC, JianjunZ, ChaoL, TianweiL, ZhenhuaH, JianN, ZiyangH, XinhuaG, YingZ. Solar Energy Materials and Solar Cells, 2013, 114: 161
CrossRef Google scholar
[5]
ZhangL P, ZhangJ J, ZhangX, CaoY, ZhaoY. Thin Solid Films, 2012, 520: 5940
CrossRef Google scholar
[6]
Zhang J J, Cao Y and Li T W, 2013 Advanced Optoelectronics for Energy and Environment, Wuhan China, May 25–26.
[7]
CaoY, ZhangJ-J, LiT-W, HuangZ-H, MaJ, YangX, NiJ, GengX-H, ZhaoY. Journal of Optoelectronics · Lasers, 2013, 24: 924
[8]
BronnebergA C, KangX, PalmansJ, JanssenP H J, LorneT, CreatoreM, van de SandenM C M. J. Appl. Phys., 2013, 114: 063305
CrossRef Google scholar
[9]
LiY, XuS Z, WeiC C, ZhaoY, ZhangX D. Physics Procedia, 2012, 32: 272
CrossRef Google scholar
[10]
HuangaJ J, ChenbY P, LienaS Y, WengaK W, ChaoC H. Curr. Appl. Phys., 2011, 11: S266
CrossRef Google scholar
[11]
GuoL, KondoM, FukawaM, SaitohK, MatsudaA. Jpn. J. Appl. Phys., 1998, 37: L1116
CrossRef Google scholar
[12]
KondoM. Solar Energy Materials and Solar Cells, 2003, 78: 543
CrossRef Google scholar
[13]
TsuR, GonzaiczJ, ChaoS S, LeeS C, TanakaK. Appl. Phys. Lett., 1982, 40: 534
CrossRef Google scholar
[14]
NiJ, ZhangJ-J, WangX-B, LiL-N, HouG-F, SunJ, GengX-H, ZhaoY. Journal of Optoelectronics· Lasers, 2010, 21: 217
[15]
Grolik Benno and Kopp Joachim, Optical Properties of Thin Semiconductor Films, October, 31st, 2003.
[16]
LiS-b, WuZ-m, ZhuK-p, JiangY-d, LiW, LiaoN-m. Journal of Optoelectronics · Lasers, 2008, 19: 352
[17]
CardonaM. Phys. Status Solidi B, 1983, 118: 463
CrossRef Google scholar
[18]
KosarevA, TorresA, HernandezY. Materials Research Society, 2006, 21: 88
CrossRef Google scholar

This work has been supported by the National Basic Research Program of China (Nos.2011CBA00705, 2011CBA00706 and 2011CBA00707), the National Natural Science Foundation of China (No.61377031), the Natural Science Foundation of Tianjin (No.12JCQNJC01000) and the Fundamental Research Funds for the Central Universities.

Accesses

Citations

Detail

Sections
Recommended

/