Preparation and characterization of size controllable spherical silver nanoparticles

Ai-ling Yang , Shun-pin Li , Yu-jin Wang , Xi-chang Bao , Ren-qiang Yang

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 164 -167.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 164 -167. DOI: 10.1007/s11801-014-4005-y
Article

Preparation and characterization of size controllable spherical silver nanoparticles

Author information +
History +
PDF

Abstract

By adjusting pH values of reactant system, the mass ratio of stabilizer/water and aging temperature, size controllable spherical silver nanoparticles (NPs) were synthesized. The properties of silver NPs are characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet visible (UV-VIS) absorption spectra. Within the pH values of 7.0–11.0, the aging temperature of 80 °C is better to improve silver NPs in shape to nearly sphere, concentrate size distribution and reduce aggregation than the aging temperature of 25 °C. The shape and dispersibility of silver NPs are the best when the pH of the reactant system is within 7.0–8.0. With pH of 7.5, aging at 80 °C, and stabilizer/water mass ratio of 1%, the spherical silver NPs with sizes of 50–70 nm were synthesized. The results are promising to be used to synthesize core/shell NPs when silver NPs are as core.

Keywords

Transmission Electron Microscope Image / Aging Temperature / Citrate Reduction / Main Absorption Peak / Aging Temperature Increase

Cite this article

Download citation ▾
Ai-ling Yang, Shun-pin Li, Yu-jin Wang, Xi-chang Bao, Ren-qiang Yang. Preparation and characterization of size controllable spherical silver nanoparticles. Optoelectronics Letters, 2014, 10(3): 164-167 DOI:10.1007/s11801-014-4005-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DolgovL, KiiskV, ReedoV, MaaroosA, SildosI, KikasJ. Phys. Status Solidi A, 2010, 207: 1166

[2]

SaraidarovT, LevchenkoV, ReisfeldR. Phys. Status Solidi C, 2010, 11–12: 2648

[3]

MaL, ChenW. J. Appl. Phys., 2010, 10: 123513

[4]

LakshmananSB, ZouX, HossuM, MaL, YangC, ChenW. J. Biomed. Nanotechnol., 2012, 8: 883

[5]

ChenY, DongB, ZhouW. Appl. Surf. Sci., 2010, 257: 1021

[6]

Jamuna-TheviK, BakarSA, IbrahimS, ShahabN, ToffMRM. Vacuum, 2011, 86: 235

[7]

LiJ, WangZY, GryczynskiI, MandeckiW. Anal. Bioanal. Chem., 2010, 398: 1993

[8]

AndradeGFS, FanMK, BroloAG. Biosens. Bioelectron., 2010, 25: 2270

[9]

ManothM, ManzoorK, PatraMK, PandeyP, VaderaSR, KumarN. Mater. Res. Bull., 2009, 44: 714

[10]

BernaboM, PucciA, GalembeckF, LeiteCAD, RuggeriG. Macrom. Mater. Eng., 2009, 294: 256

[11]

GuY, MaH, O’HalloranKP, ShiS, ZhangZ, WangX. Electrochimica Acta, 2009, 54: 7194

[12]

DongX, JiX, WuH, ZhaoL, LiJ, YangW. J. Phys. Chem. C, 2009, 113: 6573

[13]

FarrellZ, SheltonC, DunnC, GreenD. Langmuir, 2013, 29: 9291

[14]

LiJ, CushingSK, BrightJ, MengF, SentyTR, ZhengP, BristowAD, WuN. ACS Catal., 2013, 3: 47

[15]

ZhangL, HaoJ, GeoffreyB, HeJZ, WangH. ACS Nano., 2012, 6: 3514

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/