A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film

Wei Li , Sheng-jiang Chang , Xiang-hui Wang , Lie Lin , Jin-jun Bai

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 180 -183.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 180 -183. DOI: 10.1007/s11801-014-3236-2
Article

A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film

Author information +
History +
PDF

Abstract

A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide (VO2) thin film, silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analyzed. The results show that the transmittance of the filter can be actively tuned by controlling the temperature of VO2, the narrow band terahertz (THz) waves with the transmittance from 85.2% to 10.5% can be well selected at the frequency of 1.25 THz when the temperature changes from 50 °C to 80 °C, and the maximum modulation depth of this terahertz bandpass filter can achieve 74.7%.

Keywords

Bandpass Filter / Dielectric Function / Effective Conductivity / Maximum Power Density / Hole Array

Cite this article

Download citation ▾
Wei Li, Sheng-jiang Chang, Xiang-hui Wang, Lie Lin, Jin-jun Bai. A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film. Optoelectronics Letters, 2014, 10(3): 180-183 DOI:10.1007/s11801-014-3236-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FanF, GuW H, WangX H, ChangS J. Appl. Phys. Lett., 2013, 102: 121113

[2]

ZhangH, BaiJ-j, GuoP, WangX-h, ChangS-j. Optoelectronics Letters, 2009, 5: 169

[3]

ChenH T, PadillaW J, ZideJ M O, GossardA C, TaylorA J, AverittR D. Nature, 2006, 444: 597

[4]

WangC-h, KuangD-f, ChangS-j, LINL. Optoelectronics Letters, 2013, 9: 266

[5]

XiaoX, LiY, HouB, ZhouB, WenW. Opt. Lett., 2012, 37: 3594

[6]

LiW, KuangD F, FanF, ChangS J, LinL. Appl. Opt., 2012, 51: 7098

[7]

KimY S, LinS-Y, WuH-Y, PanR-P. J. Appl. Phys., 2011, 109: 123111

[8]

ViewegN, BornN, Al-NaibI, KochM. J. Infrared Milli. Terahz. Waves, 2012, 33: 327

[9]

HochbergM, JonesT B, WangG X, ShearnM, HarvardK, LuoJ D, ChenB Q, ShiZ W, LawsonR, SullivanP, JenA K Y, DaltonL, SchererA. Nat. Mater., 2006, 5: 703

[10]

EbbesenT W, LezecH J, GhaemisH F, ThioT, WolffP A. Nature, 1998, 391: 667

[11]

EbbesenT W, LezecH J, GhaemisH F, ThioT, GruppD E. Phys. Rev. B, 1998, 58: 6779

[12]

QuD X, GrischkowskyD, ZhangW L. Opt. Lett., 2004, 29: 896

[13]

JankeC, RivasJ G, BolivarP H, KurzH. Opt. Lett., 2005, 30: 2357

[14]

WenQ Y, ZhangH W, YangQ H, XieY S, ChenK, LiuY L. Appl. Phys. Lett., 2010, 97: 021111

[15]

ChoC R, ChoS I, VadimS, JungR, YooI. Thin Solid Films, 2006, 495: 375

[16]

FanF, GuW H, ChenS, WangX H, ChangS H. Opt. Lett., 2013, 38: 1582

[17]

YaoT, ZhangX D, SunZ H, LiuS J, HuangY Y, XieY, WuC Z, YuanX, ZhangW Q, WuZ Y, PanG G, HuF C, WuL H, LiuQ H, WeiS Q. Phys. Rev. Lett., 2010, 105: 226405

[18]

ShiQ W, HuangW X, ZhangY X, YanJ Z, ZhangY B, MaoM, ZhangY, TuM J. ACS Appl. Mater. Interfaces, 2011, 3: 3523

[19]

JepsenP U, FischerB M, ThomanA, HelmH, SuhJ Y, LopezR, HaglundR F. Phys. Rev. B, 2006, 74: 205103

[20]

MandalP, SpeckA, KoC, RamanathanS. Opt. Lett., 2011, 36: 1927

[21]

BruggemanD A G. Ann. Phys., 1935, 24: 636

[22]

ChoiH S, AhnJ S, JungJ H, NohT W, KimD H. Phys. Rev. B, 1996, 54: 4621

[23]

WaltherM, CookeD G, SherstanC, HajarM, FreemanM R, HegmannF A. Phys. Rev. B, 2007, 76: 125408

[24]

NaftalyM, MilesR E. J. Appl. Phys., 2007, 102: 043517

[25]

LamanN, GrischkowskyD. Appl. Phys. Lett., 2007, 90: 122115

[26]

QuD, GrischkowskyD, ZhangW. Opt. Lett., 2004, 29: 896

[27]

LezecH J, ThioT. Opt. Exp., 2004, 12: 3629

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/