Properties of p-type ZnO thin films with different orientations

Li-ping Dai, Shu-ya Wang, Zhi-qin Zhong, Guo-jun Zhang

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 111-114.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 111-114. DOI: 10.1007/s11801-014-3230-8
Article

Properties of p-type ZnO thin films with different orientations

Author information +
History +

Abstract

The stable properties of N-doped p-type ZnO thin films with preferential nonpolar (100) plane orientation relative to polar (002) plane orientation are investigated. The two kinds of oriented thin films are fabricated by the methods of post heat treatment and double sources in situ, respectively. The Hall investigations demonstrate that N-doped p-type ZnO thin films with preferential nonpolar (100) plane orientation are more stable,and the results are also proved by build-in electric field model and electronic structure calculations of the films based on the first principle.

Keywords

Plane Orientation / Surface Chemical Composition / Total Electronic Density / Polar Electric Field / Post Heat Treatment

Cite this article

Download citation ▾
Li-ping Dai, Shu-ya Wang, Zhi-qin Zhong, Guo-jun Zhang. Properties of p-type ZnO thin films with different orientations. Optoelectronics Letters, 2014, 10(2): 111‒114 https://doi.org/10.1007/s11801-014-3230-8

References

[1]
LiangH K, YuS F, YangH Y. Appl. Phys. Lett., 2010, 97: 241107
CrossRef Google scholar
[2]
LiuF J, HuZ F, SunJ, LiZ J, HuangH Q, ZhaoJ W, ZhangX Q, WangY S. Solid State Electronics, 2012, 68: 90
CrossRef Google scholar
[3]
DongY F, LiQ S, ZhangL C, ZhaoT. Journal of Optoelectronics·Laser, 2012, 23: 111
[4]
DaiL P, DengH, ChenG. Applied Surface Science, 2008, 254: 1599
CrossRef Google scholar
[5]
LookD C. Mater. Sci. Eng. B, 2001, 80: 383
CrossRef Google scholar
[6]
WalleC G. Phys. Rev. Lett., 2000, 85: 1012
CrossRef Google scholar
[7]
LookD C, ReynoldsD C. Appl. Phys. Lett., 2002, 81: 1830
CrossRef Google scholar
[8]
AshrafiA B, SuemuneI, KumanoH, TanakaS. Jpn. J. Appl. Phys., 2002, 41: L1281
CrossRef Google scholar
[9]
ChuS, ZhanN, LinY Q, ChernyakL. Appl. Phys. Lett., 2011, 98: 98
[10]
GuptaM K, SinhaN, SinghB K, KumarB. Materials Letters, 2010, 64: 1825
CrossRef Google scholar
[11]
WangP, ChenN, YinZ G. Appl. Phys. Lett., 2006, 88: 152102
CrossRef Google scholar
[12]
HongenN, HahnS H, KooK K, KimJ S. Materials Letters, 2010, 64: 157
CrossRef Google scholar
[13]
YeH B, KongJ F, ShenW Z. Appl. Phys. Lett., 2007, 90: 102115
CrossRef Google scholar
[14]
BhuvanaK P, ElanchezhiyanJ, GopalakrishnanN. J. Alloy. Comp., 2009, 478: 54
CrossRef Google scholar
[15]
DaiL P, DengH, MaoF Y, ZangJ D. J. Mater. Sci.: Mater. Electron, 2008, 19: 727
[16]
LookD C, ClaflinB. Phys. Status Solidi B, 2004, 241: 624
CrossRef Google scholar
[17]
KamadaY, FujitaS, KimuraM, HiramatsuT, MatsudaT, FurutaM, HiraoT. Appl. Phys. Lett., 2011, 98: 103512
CrossRef Google scholar
[18]
ElanchezhiyanJ, BaeK R, LeeW J, ShinB C, KimS C. Materials Letters, 2010, 64: 190
CrossRef Google scholar
[19]
DaiL P, DengH, ChenG, WeiM, LiY. Material Letters, 2007, 61: 3539
CrossRef Google scholar
[20]
DaiL P, DengH, ChenJ J, WeiM. Solid State Commun., 2007, 143: 378
CrossRef Google scholar
[21]
SegallM D, LindanP D, ProbertM J, ClarkP J. J. Phys: Condens. Matter., 2007, 14: 2717
[22]
LiuN. First-principles Study of ZnO Electronic Structure, 2007, Chengdu, ChinaUESTC28

Accesses

Citations

Detail

Sections
Recommended

/