Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films

Hua-rui Liu, Min Li, Peng Sun, Shi-qi Wang, Xin Jin, Xian-ke Sun, Yu-kai An, Ji-wen Liu

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 115-118.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 115-118. DOI: 10.1007/s11801-014-3225-5
Article

Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films

Author information +
History +

Abstract

The nonmagnetic element Ca-doped LiNbO3 films were prepared on Si (111) substrates by radio frequency (RF) magnetron sputtering technique. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that the Ca atoms enter the LiNbO3 lattice in the form of Ca2+ ions. Superconducting quantum interference device (SQUID) results show that the Ca-doped LiNbO3 films have room-temperature ferromagnetism and a maximum saturation magnetization of 4800 A/m at the 3% of Ca atom doping concentration. The room temperature ferromagnetism of the Ca-doped LiNbO3 films can be attributed to the occurrence of vacancies due to Ca doping and is the intrinsic property.

Keywords

Superconducting Quantum Interference Device / Room Temperature Ferromagnetism / Metallic Calcium / Nonmagnetic Element / Sensitivity Factor Method

Cite this article

Download citation ▾
Hua-rui Liu, Min Li, Peng Sun, Shi-qi Wang, Xin Jin, Xian-ke Sun, Yu-kai An, Ji-wen Liu. Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films. Optoelectronics Letters, 2014, 10(2): 115‒118 https://doi.org/10.1007/s11801-014-3225-5

References

[1]
BibesM, BarthelemyA. Nat. Mater., 2008, 7: 425
CrossRef Google scholar
[2]
NagaoN, IijimaK. Vacuum, 2009, 83: 1132
CrossRef Google scholar
[3]
CatalanG, ScottJ F. Adv. Mater., 2009, 21: 2463
CrossRef Google scholar
[4]
HillN A, FilippettiA. J. Magn. Magn. Mater., 2002, 242: 976
CrossRef Google scholar
[5]
RameshR, SpaldinN A. Nat. Mater., 2007, 6: 21
CrossRef Google scholar
[6]
ScottJ F. Science, 2007, 315: 954
CrossRef Google scholar
[7]
HillN A. J. Phys. Chem. B., 2000, 104: 6694
CrossRef Google scholar
[8]
FiebigM. J. Phys. D: Appl. Phys., 2005, 38: 123
CrossRef Google scholar
[9]
JiR, ZuoC, LiuJ. Journal of Optoelectronics·Laser, 2010, 21: 1337
[10]
XiaoQ, AnY, LiX, XuL, WuY, DuanL, LiuJ. Journal of Optoelectronics ·Laser, 2011, 22: 1667
[11]
SongC, WangC Z, YangY C, LiuX J, ZengF, PanF. Appl. Phys. Lett., 2008, 92: 262901
CrossRef Google scholar
[12]
SongC, WangC, LiuX, ZengF, PanF. Cryst. Growth Des., 2009, 9: 1235
CrossRef Google scholar
[13]
ChenC, ZengF, LiJ H, ShengP, LuoJ T, YangY C. Thin Solid Films, 2011, 520: 764
CrossRef Google scholar
[14]
ShengP, ZengF, TangG S, PanF, YanW S, HuF C. J. Appl. Phys., 2012, 112: 033913
CrossRef Google scholar
[15]
WeisR S, GaylordT K. Applied Physics A, 1985, 37: 191
CrossRef Google scholar
[16]
LiuY, GuT, WangY, WengX, WuZ. Catalysis Communications, 2012, 18: 106
CrossRef Google scholar
[17]
AufrayM, MenuelS, FortY, EschbachJ, RouxelD, VincentB. J. Nanosci. Nanotechnol., 2009, 9: 4780
CrossRef Google scholar
[18]
YanS, GeS, ZuoY, QiaoW, ZhangL. Scripta Mater., 2009, 61: 387
CrossRef Google scholar
[19]
YanS M, GeS H, QiaoW, ZuoY L, XuF, XiL. J. Magn. Magn. Mat., 2011, 323: 264
CrossRef Google scholar
[20]
HuZ, LiM, YuB, PeiL, LiuJ, WangJ, ZhaoX. J. Phys. D: Appl. Phys., 2009, 42: 185010
CrossRef Google scholar
[21]
CaoE, ZhangY, QinH, ZhangL, HuJ. Physica B, 2013, 410: 68
CrossRef Google scholar
[22]
Díaz-MorenoC, FariasR, MaciasA H-, Elizalde-GalindoJ, Hernandez-PazJ. J. Appl. Phys., 2012, 111: 07D907
CrossRef Google scholar
[23]
ZhangY, HuJ, LiuH, QinH. Transactions on Magnetics, 2011, 47: 2916
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/