Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films

Hua-rui Liu , Min Li , Peng Sun , Shi-qi Wang , Xin Jin , Xian-ke Sun , Yu-kai An , Ji-wen Liu

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 115 -118.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 115 -118. DOI: 10.1007/s11801-014-3225-5
Article

Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films

Author information +
History +
PDF

Abstract

The nonmagnetic element Ca-doped LiNbO3 films were prepared on Si (111) substrates by radio frequency (RF) magnetron sputtering technique. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that the Ca atoms enter the LiNbO3 lattice in the form of Ca2+ ions. Superconducting quantum interference device (SQUID) results show that the Ca-doped LiNbO3 films have room-temperature ferromagnetism and a maximum saturation magnetization of 4800 A/m at the 3% of Ca atom doping concentration. The room temperature ferromagnetism of the Ca-doped LiNbO3 films can be attributed to the occurrence of vacancies due to Ca doping and is the intrinsic property.

Keywords

Superconducting Quantum Interference Device / Room Temperature Ferromagnetism / Metallic Calcium / Nonmagnetic Element / Sensitivity Factor Method

Cite this article

Download citation ▾
Hua-rui Liu, Min Li, Peng Sun, Shi-qi Wang, Xin Jin, Xian-ke Sun, Yu-kai An, Ji-wen Liu. Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films. Optoelectronics Letters, 2014, 10(2): 115-118 DOI:10.1007/s11801-014-3225-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BibesM, BarthelemyA. Nat. Mater., 2008, 7: 425

[2]

NagaoN, IijimaK. Vacuum, 2009, 83: 1132

[3]

CatalanG, ScottJ F. Adv. Mater., 2009, 21: 2463

[4]

HillN A, FilippettiA. J. Magn. Magn. Mater., 2002, 242: 976

[5]

RameshR, SpaldinN A. Nat. Mater., 2007, 6: 21

[6]

ScottJ F. Science, 2007, 315: 954

[7]

HillN A. J. Phys. Chem. B., 2000, 104: 6694

[8]

FiebigM. J. Phys. D: Appl. Phys., 2005, 38: 123

[9]

JiR, ZuoC, LiuJ. Journal of Optoelectronics·Laser, 2010, 21: 1337

[10]

XiaoQ, AnY, LiX, XuL, WuY, DuanL, LiuJ. Journal of Optoelectronics ·Laser, 2011, 22: 1667

[11]

SongC, WangC Z, YangY C, LiuX J, ZengF, PanF. Appl. Phys. Lett., 2008, 92: 262901

[12]

SongC, WangC, LiuX, ZengF, PanF. Cryst. Growth Des., 2009, 9: 1235

[13]

ChenC, ZengF, LiJ H, ShengP, LuoJ T, YangY C. Thin Solid Films, 2011, 520: 764

[14]

ShengP, ZengF, TangG S, PanF, YanW S, HuF C. J. Appl. Phys., 2012, 112: 033913

[15]

WeisR S, GaylordT K. Applied Physics A, 1985, 37: 191

[16]

LiuY, GuT, WangY, WengX, WuZ. Catalysis Communications, 2012, 18: 106

[17]

AufrayM, MenuelS, FortY, EschbachJ, RouxelD, VincentB. J. Nanosci. Nanotechnol., 2009, 9: 4780

[18]

YanS, GeS, ZuoY, QiaoW, ZhangL. Scripta Mater., 2009, 61: 387

[19]

YanS M, GeS H, QiaoW, ZuoY L, XuF, XiL. J. Magn. Magn. Mat., 2011, 323: 264

[20]

HuZ, LiM, YuB, PeiL, LiuJ, WangJ, ZhaoX. J. Phys. D: Appl. Phys., 2009, 42: 185010

[21]

CaoE, ZhangY, QinH, ZhangL, HuJ. Physica B, 2013, 410: 68

[22]

Díaz-MorenoC, FariasR, MaciasA H-, Elizalde-GalindoJ, Hernandez-PazJ. J. Appl. Phys., 2012, 111: 07D907

[23]

ZhangY, HuJ, LiuH, QinH. Transactions on Magnetics, 2011, 47: 2916

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/