Chemical solution route to synthesize claw-like ZnO nanorod array and its optical properties

Ling-wei Hu , Chun-hong Hu , Hua Tian , Yu-xia Zhang , Ai-hua Jing

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 81 -83.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (2) : 81 -83. DOI: 10.1007/s11801-014-3212-x
Article

Chemical solution route to synthesize claw-like ZnO nanorod array and its optical properties

Author information +
History +
PDF

Abstract

By using a low-cost and facile hydrothermal method, a peculiar claw-like ZnO nanorod array is successfully synthesized. The hydrothermal growth is done in an aqueous solution with equimolar zinc acetate (ZAc, Zn(CH3COO)2·2H2O) and hexamethylenetetramine (HMTA, C6H12N4). The obtained ZnO nanorod array is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that the nanorods are high-quality monocrystals. The photoluminescence (PL) spectrum is performed to investigate the optical properties of this product.

Keywords

Select Area Electron Diffraction / High Resolution Transmission Electron Microscopy / Seed Layer / HMTA / Hydrothermal Growth

Cite this article

Download citation ▾
Ling-wei Hu, Chun-hong Hu, Hua Tian, Yu-xia Zhang, Ai-hua Jing. Chemical solution route to synthesize claw-like ZnO nanorod array and its optical properties. Optoelectronics Letters, 2014, 10(2): 81-83 DOI:10.1007/s11801-014-3212-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LeeS, KimW, YongK. Advanced Materials, 2011, 23: 4398

[2]

HeY, WangJ-A, ChenX-B, ZhangW-F, ZengX-Y, GuQ-W. Journal of Nanoparticle Research, 2010, 12: 169

[3]

DongH, LiuY, LuJ, ChenZ, WangJ, ZhangL. Journal of Materials Chemistry C, 2013, 1: 202

[4]

TaoP, FengQ, JiangJ, ZhaoH, XuR, LiuS, LiM, SunJ, SongZ. Chemical Physics Letters, 2012, 522: 92

[5]

JeanJ, ChangS, BrownP R, ChengJ J, RekemeyerP H, BawendiM G, GradečakS, BulovićV. Advanced Materials, 2013, 25: 2790

[6]

ZhangQ, DandeneauC S, ZhouX, CaoG. Advanced Materials, 2009, 21: 4087

[7]

SinghG, ChoudharyA, HaranathD, JoshiA G, SinghN, SinghS, PasrichaR. Carbon, 2012, 50: 385

[8]

YiJ, LeeJ M, ParkW I. Sensors and Actuators B: Chemical, 2011, 155: 264

[9]

DaiS, WangY, ZhangD, HanX, ShiQ, WangS, DuZ. Journal of Sol-Gel Science and Technology, 2011, 60: 17

[10]

LiS-S, ZhangZ, HangJ-Z, FengX-P, LiuR-X. Chinese Physics B, 2011, 20: 127102

[11]

VayssieresL. Advanced Materials, 2003, 15: 464

[12]

CaiJ-w, XuJ-p, ZhangX-s, NiuX-p, XingT-y, JiT, LiL. Optoelectronics Letters, 2012, 8: 4

[13]

KoS H, LeeD, KangH W, NamK H, YeoJ Y, HongS J, GrigoropoulosC P, SungH J. Nano Letters, 2011, 11: 666

[14]

YangJ, LiuG, LuJ, QiuY, YangS. Applied Physics Letters, 2007, 90: 103109

[15]

SuQ, DongZ, ZhangJ, DuG, XuB. Nanotechnology, 2013, 24: 255705

[16]

LaurentK, BrouriT, Capo-ChichiM, YuD P, Leprince-WangY. Journal of Applied Physics, 2011, 110: 094310

[17]

ZhangZ-L, ZhengG, QuF-Y, WuX. Chinese Physics B, 2012, 21: 098104

[18]

FuY-y, DaiL-p, WangS-y, ZhangG-j. Optoelectronics Letters, 2013, 9: 278

[19]

WangB, JinX, OuyangZ B, XuP. Applied Physics A, 2012, 108: 195

[20]

ZhangL-c, LiQ-s, DongY-f, MaZ-x. Optoelectronics Letters, 2012, 8: 113

[21]

FazioE, MezzasalmaA M, MondioG, NeriF, SaijaR. Applied Surface Science, 2013, 272: 30

[22]

VayssieresL, KeisK, LindquistS-E, VayssieresA H. Journal of Physical Chemistry B, 2001, 105: 3350

[23]

BoyleD S, GovenderK, O’BrienP. Chemical Communications, 2002, 80

[24]

GongM, XuX, YangZ, LiuY, LvH, LvL. Nanotechnology, 2009, 20: 165602

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/