Preparation and characterization of cubic lattice ZnS:Na films with (111) preferred orientation

Shu-wen Xue , Jian Chen , Chang-wei Zou

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 206 -208.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (3) : 206 -208. DOI: 10.1007/s11801-014-3206-8
Article

Preparation and characterization of cubic lattice ZnS:Na films with (111) preferred orientation

Author information +
History +
PDF

Abstract

ZnS:Na thin films with (111) preferred orientation were deposited on glass substrates by vacuum evaporation method. The as-prepared films were annealed in flowing argon at 400–500 °C to improve the film crystallinity and electrically activate the dopants. The structural, optical and electrical properties of ZnS:Na films are investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance measurements and the four-point probe method. Results show that the as-prepared ZnS:Na films are amorphous, and exhibit (111) preferred orientation after annealing at 400 −500 °C. The PL emissions at 414 nm and 439 nm are enhanced due to the increase of the intrinsic defects induced by the thermal annealing. However, all the samples exhibit high resistivity due to the heavy self-compensation.

Keywords

Thermal Annealing / ZnTe / Intrinsic Defect / Valence Band Maximum / Optical Transmittance Measurement

Cite this article

Download citation ▾
Shu-wen Xue, Jian Chen, Chang-wei Zou. Preparation and characterization of cubic lattice ZnS:Na films with (111) preferred orientation. Optoelectronics Letters, 2014, 10(3): 206-208 DOI:10.1007/s11801-014-3206-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XinC -Z, LiP, XuJ -P, ZhangX -S, LiD -J, LiL. Journal of Optoelectronics·Laser, 2012, 23: 1913

[2]

LuoC -Y, ZhangX -S, XuJ -P, WuY -Y, NiuX -P, LiK -X, GeL, LiL. Journal of Optoelectronics ·Laser, 2012, 23: 1775

[3]

JamesB. Nat. Photon., 2012, 6: 343

[4]

ZhangW, ZengX H, LuJ F, ChenH T. Mter. Res. Bull., 2013, 48: 3843

[5]

KunioI, ToshikazuO, YoichiK, ShizuoF, ShigeoF. J. Cryst. Growth, 1994, 138: 28

[6]

McLaughlinM, SakeekH F, MaguireP, GrahamW G, MolloyJ, MorrowT, LavertyS, AndersonJ. Appl. Phys. Lett., 1993, 63: 1865

[7]

AbounadiA, BlasioM D, BoucharaD, CalasJ, AverousM, BriotO, BriotN, CloitreT, AulombardR L, GilB. Phys. Rev. B, 1994, 50: 11677

[8]

VidalJ, de MeloO, VigilO, LopezN, Contreras-PuenteG, Zelaya-AngelO. Thin Solid Films, 2002, 419: 118

[9]

ChadiD J. Jpn. J. Appl. Phys., 1999, 38: 2617

[10]

YuanG D, ZhangW J, ZhangW F, FanX, BelloI, LeeC S, LeeS T. Appl. Phys. Lett., 2008, 93: 213102

[11]

PengQ A, JieJ S, XieC, WangL, ZhangX W, WuD, YuY Q. Appl. Phys. Lett., 2011, 98: 123117

[12]

ButkhuziT V, TchelidzeT G, ChikoidzeE G, KekelidzeN P. Phys. Status Sol. (B), 2002, 229: 365

[13]

YamamotoaT, KishimotobS, IidaS. Physica B, 2001, 308–310: 916

[14]

KohikiaS, SuzukaT, KohikiaS, SuzukaT, YamamotoT, KishimotoS. J. Appl. Phys., 2002, 91: 760

[15]

KishimotoS, KatoA, NaitoA, SakamotoY, IidaS. Phys. Status. Sol. (B), 2002, 229: 391

[16]

FangX S, ZhaiT Y, GautambU K, LiL, WuL M, BandoY, GolbergD. Prog. Mater. Sci., 2011, 56: 175

[17]

TaucJ. Amorphous and Liquid Semiconductors, 1974, London, Plenum

[18]

DavidE A, MottN F. Phil. Mag., 1970, 22: 903

[19]

GaiY Q, LiJ B, YaoB, XiaJ B. J. Appl. Phys., 2009, 105: 113704

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/