Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector

Xiao-nan Li, Zong-heng Yuan, Long Zhou

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 38-42.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 38-42. DOI: 10.1007/s11801-014-3195-7
Article

Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector

Author information +
History +

Abstract

An efficient light-trapping structure, which consists of the periodic Ag nanoparticles and a distributed Bragg reflector (DBR) with high reflectivity, is presented for the thin-film gallium arsenide (GaAs) solar cells. The effects of both Ag nanoparticles and DBR on the optical absorption of GaAs solar cells are theoretically investigated by using finite-difference time-domain (FDTD) method. The optimization process of parameters for the solar cell with both structures is analyzed systematically. The great absorption enhancement in GaAs layer is demonstrated, especially in the wavelength region near the GaAs band gap. It is observed that the superposition of the two effects excited by Ag nanoparticles and DBR results in the obvious absorption enhancement. By using cylindrical Ag nanoparticles and DBR together, the maximum enhancement factor of the solar cell is obtained as 4.83 in the simulation.

Keywords

GaAs / Solar Cell / Localize Surface Plasmon Resonance / GaAs Layer / Optic Express

Cite this article

Download citation ▾
Xiao-nan Li, Zong-heng Yuan, Long Zhou. Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector. Optoelectronics Letters, 2014, 10(1): 38‒42 https://doi.org/10.1007/s11801-014-3195-7

References

[1]
YangT, WangX, LiuW, ShiY, YangF. Optics Express, 2013, 21: 18207
CrossRef Google scholar
[2]
HubbardS M, CressC D, BaileyC G, RaffaelleR P, BaileyS G, WiltD M. Applied Physics Letters, 2008, 92: 123512
CrossRef Google scholar
[3]
KimB-J, KimJ. Optics Express, 2011, 19: A326
CrossRef Google scholar
[4]
LópezN, ReichertzL A, YuK M, CampmanK, WalukiewiczW. Physical Review Letters, 2011, 106: 028701
CrossRef Google scholar
[5]
KostenE D, AtwaterJ H, ParsonsJ, PolmanA, AtwaterH A. Light: Science & Applications, 2013, 2: e45
[6]
BermelP, LuoC, ZengL, KimerlingL C, JoannopoulosJ D. Optics Express, 2007, 15: 16986
CrossRef Google scholar
[7]
FerryV E, VerschuurenM A, LiH B, VerhagenE, WaltersR J, SchroppR E, PolmanA. Optics Express, 2010, 18: A237
CrossRef Google scholar
[8]
ChangT H, WuP H, ChenS H, ChanC H, LeeC C, ChenC C, SuY K. Optics Express, 2009, 17: 6519
CrossRef Google scholar
[9]
XuR, WangX, SongL, LiuW, JiA, YangF, LiJ. Optics Express, 2012, 20: 5061
CrossRef Google scholar
[10]
TurnerS, MokkapatiS, JolleyG, FuL, TanH H, JagadishC. Optics Express, 2013, 21: A324
CrossRef Google scholar
[11]
ZhaoL, ZuoY H, ZhouC L, LiH L, DiaoH W, WangW J. Solar Energy, 2010, 84: 110
CrossRef Google scholar
[12]
HsuC, BurkhardG F, McGeheeM D, CuiY. Nano Research, 2011, 4: 153
CrossRef Google scholar
[13]
ZhouD, BiswasR. Journal of Applied Physics, 2008, 103: 093102
CrossRef Google scholar
[14]
YanQ-q, QinW-j, WangC, SongP-f, DingG-j, YangL-y, YinS-g. Optoelectronics Letters, 2011, 7: 410
CrossRef Google scholar
[15]
WangC, QinW-j, MaC-y, ZhangQ, YangL-y, YinS-g. Optoelectronics Letters, 2012, 8: 401
CrossRef Google scholar
[16]
PalikE D. Handbook of Optical Constants of Solids, 1991, Boston, Academic Press
[17]
NagelJ R, ScarpullaM A. Optics Express, 2010, 18: A139
CrossRef Google scholar
[18]
http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html, Reference Solar Spectral Irradiance: ASTM G-173, 2003.

This work has been supported by the International Scientific and Technological Cooperation Projects of Guizhou Province in China (No.2011GZ76257), and Program for Innovative Research Team of Guilin University of Electronic Technology (IRTGUET).

Accesses

Citations

Detail

Sections
Recommended

/