Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector

Xiao-nan Li , Zong-heng Yuan , Long Zhou

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 38 -42.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 38 -42. DOI: 10.1007/s11801-014-3195-7
Article

Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector

Author information +
History +
PDF

Abstract

An efficient light-trapping structure, which consists of the periodic Ag nanoparticles and a distributed Bragg reflector (DBR) with high reflectivity, is presented for the thin-film gallium arsenide (GaAs) solar cells. The effects of both Ag nanoparticles and DBR on the optical absorption of GaAs solar cells are theoretically investigated by using finite-difference time-domain (FDTD) method. The optimization process of parameters for the solar cell with both structures is analyzed systematically. The great absorption enhancement in GaAs layer is demonstrated, especially in the wavelength region near the GaAs band gap. It is observed that the superposition of the two effects excited by Ag nanoparticles and DBR results in the obvious absorption enhancement. By using cylindrical Ag nanoparticles and DBR together, the maximum enhancement factor of the solar cell is obtained as 4.83 in the simulation.

Keywords

GaAs / Solar Cell / Localize Surface Plasmon Resonance / GaAs Layer / Optic Express

Cite this article

Download citation ▾
Xiao-nan Li, Zong-heng Yuan, Long Zhou. Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector. Optoelectronics Letters, 2014, 10(1): 38-42 DOI:10.1007/s11801-014-3195-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangT, WangX, LiuW, ShiY, YangF. Optics Express, 2013, 21: 18207

[2]

HubbardS M, CressC D, BaileyC G, RaffaelleR P, BaileyS G, WiltD M. Applied Physics Letters, 2008, 92: 123512

[3]

KimB-J, KimJ. Optics Express, 2011, 19: A326

[4]

LópezN, ReichertzL A, YuK M, CampmanK, WalukiewiczW. Physical Review Letters, 2011, 106: 028701

[5]

KostenE D, AtwaterJ H, ParsonsJ, PolmanA, AtwaterH A. Light: Science & Applications, 2013, 2: e45

[6]

BermelP, LuoC, ZengL, KimerlingL C, JoannopoulosJ D. Optics Express, 2007, 15: 16986

[7]

FerryV E, VerschuurenM A, LiH B, VerhagenE, WaltersR J, SchroppR E, PolmanA. Optics Express, 2010, 18: A237

[8]

ChangT H, WuP H, ChenS H, ChanC H, LeeC C, ChenC C, SuY K. Optics Express, 2009, 17: 6519

[9]

XuR, WangX, SongL, LiuW, JiA, YangF, LiJ. Optics Express, 2012, 20: 5061

[10]

TurnerS, MokkapatiS, JolleyG, FuL, TanH H, JagadishC. Optics Express, 2013, 21: A324

[11]

ZhaoL, ZuoY H, ZhouC L, LiH L, DiaoH W, WangW J. Solar Energy, 2010, 84: 110

[12]

HsuC, BurkhardG F, McGeheeM D, CuiY. Nano Research, 2011, 4: 153

[13]

ZhouD, BiswasR. Journal of Applied Physics, 2008, 103: 093102

[14]

YanQ-q, QinW-j, WangC, SongP-f, DingG-j, YangL-y, YinS-g. Optoelectronics Letters, 2011, 7: 410

[15]

WangC, QinW-j, MaC-y, ZhangQ, YangL-y, YinS-g. Optoelectronics Letters, 2012, 8: 401

[16]

PalikE D. Handbook of Optical Constants of Solids, 1991, Boston, Academic Press

[17]

NagelJ R, ScarpullaM A. Optics Express, 2010, 18: A139

[18]

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html, Reference Solar Spectral Irradiance: ASTM G-173, 2003.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/