Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

Ming-dong Xuan , Long-gui Dai , Hai-qiang Jia , Hong Chen

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 51 -54.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 51 -54. DOI: 10.1007/s11801-014-3188-6
Article

Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography

Author information +
History +
PDF

Abstract

Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.

Keywords

Sapphire Substrate / Tetra Methyl Ammonium Hydroxide / Epitaxial Lateral Overgrowth / Light Extraction Efficiency / Bottom Width

Cite this article

Download citation ▾
Ming-dong Xuan, Long-gui Dai, Hai-qiang Jia, Hong Chen. Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography. Optoelectronics Letters, 2014, 10(1): 51-54 DOI:10.1007/s11801-014-3188-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PonceF A, BourD P. Nature, 1997, 386: 351

[2]

LeeS-N, KimJ, KimH. Journal of the Electrochemical Society, 2011, 158: H994

[3]

WeiT, KongQ, WangJ, LiJ, ZengY, WangG, LiJ, LiaoY, YiF. Optics Express, 2011, 19: 1065

[4]

DengX-g, HanJ, XingY-h, WangJ-x, FanY-m, ChenX, LiY-z, ZhuJ-j. Journal of Optoelectronics·Laser, 2013, 24: 1338

[5]

LiouJ-K, LiuY-J, ChenC-C, ChouP-C, HsuW-C, LiuW-C. Electron Device Letters, 2012, 33: 227

[6]

OhT S, JeongH, LeeY S, SeoT H, ParkA H, KimH, LeeK J, JeongM S, SuhE-K. Thin Solid Films, 2011, 519: 2398

[7]

CaoW, BiserJ M, EeY-K, LiX-H, TansuN, ChanH M, VinciR P. Journal of Applied Physics, 2011, 110: 053505

[8]

LinH Y, ChenY J, ChangC C, LiX F, HsuS C, LiuC Y. Electrochemical and Solid-State Letters, 2011, 15: H72

[9]

MastroM A, KimB-J, JungY, HiteJ K, EddyC RJr, KimJ. Current Applied Physics, 2011, 11: 682

[10]

SuY K, ChenJ J, LinC L, KaoC C. Physica Status Solidi C, 2010, 7: 1784

[11]

SuaY K, ChenJ J, LinC L, ChenS M, LiW L, KaoC C. Journal of Crystal Growth, 2009, 311: 2973

[12]

ChenH, WangC, ChouS Y. Extraction Efficiency Improvement of GaN Light-emitting Diode Using Sub-wavelength Nanoimprinted Patterns on Sapphire Substrate, CLEO: Science and Innovations, 2011,

[13]

GuerfiY, CarcenacF, LarrieuG. Microelectronicx Engineering, 2013, 110: 173

[14]

DasN, KararA, VasilievM, TanC L, AlamehK, LeeY T. Optics Communications, 2011, 284: 1694

[15]

ByeonK-J, ChoJ-Y, KimJ, ParkH, LeeH. Optics Express, 2012, 20: 11423

[16]

Wan-yongLI, Yan-junHAN, YiLUO. Journal of Optoelectronics·Laser, 2013, 24: 1042

[17]

MaoW, WathuthanthriI, ChoiC-H. Optics Letters, 2011, 36: 3176

[18]

KravchenkoA, ShevchenkoA, OvchinnikovV, PriimagiA, KaivolaM. Advanced Materials, 2011, 23: 4174

[19]

JinnilC, Myung-HoC, Ki-YoungD, Eun-MiP, Dae-JinH, YunkwonP, SnagS I, JunghoP J, Byeong-KwonJ. Journal of Nanoscience and Nanotechnology, 2011, 11: 778

[20]

WangJ, GuoL W, JiaH Q, XingZ G, WangY, YanJ F, YuN S, ChenH, ZhouJ M. Journal of Crystal Growth, 2006, 290: 398

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/