Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities

Ming-jia He, Rui-sheng Liang, Yu-ruo Wang, Zhe Yu, Liangbing Luo, Wen-hao Mo, Teng-long Li

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 12-15.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 12-15. DOI: 10.1007/s11801-014-3186-8
Article

Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities

Author information +
History +

Abstract

A novel method is presented to enhance the resonant transmission contrast ratio in metal-insulator-metal (MIM) side-coupled-cavity waveguide. The finite difference time domain (FDTD) method is used to simulate and study the optical properties of the filter based on double side-coupled cavities structure with optofluidics pump system (OPS). This system provides a flexible way to change wavelength in the optical filter. In the numerical simulation, the resonant wavelengths from 1000 nm to 1550 nm are analyzed. We find that the double side-coupled cavities structure with OPS has higher on-resonance transmittance and better wavelength selectivity than the single side-coupled cavity structure with OPS.

Keywords

Effective Refractive Index / Resonance Wavelength / Finite Difference Time Domain / Optic Express / Resonant Wavelength

Cite this article

Download citation ▾
Ming-jia He, Rui-sheng Liang, Yu-ruo Wang, Zhe Yu, Liangbing Luo, Wen-hao Mo, Teng-long Li. Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities. Optoelectronics Letters, 2014, 10(1): 12‒15 https://doi.org/10.1007/s11801-014-3186-8

References

[1]
BarnesW L, DereuxA, EbbesenT W. Nature, 2003, 424: 824
CrossRef Google scholar
[2]
VeronisG, FanS. Applied Physics Letters, 2005, 87: 131102
CrossRef Google scholar
[3]
ChenP, LiangR, HuangQ, YuZ, XuX. Optics Express, 2011, 19: 7633
CrossRef Google scholar
[4]
EggletonB J, AhujaA, WestbrookP, RogersJ, KuoP, NielsenT, MikkelsenB. Journal of Lightwave Technology, 2000, 18: 1418
CrossRef Google scholar
[5]
GaoH, ShiH, WangC, DuC, LuoX, DengQ, LvY, LinX, YaoH. Optics Express, 2005, 13: 10795
CrossRef Google scholar
[6]
LeeT W, GrayS K. Optics Express, 2005, 13: 9652
CrossRef Google scholar
[7]
ChenP, LiangR, HuangQ, XuY. Optics Communications, 2011, 284: 4795
CrossRef Google scholar
[8]
WangB, WangG P. Applied Physics Letters, 2005, 87: 013107
CrossRef Google scholar
[9]
HosseiniA, MassoudY. Optics Express, 2006, 14: 11318
CrossRef Google scholar
[10]
BozhevolnyiS I, VolkovV S, DevauxE, LaluetJ Y, EbbesenT W. Nature, 2006, 440: 508
CrossRef Google scholar
[11]
YuZ, LiangR, ChenP, HuangQ, HuangT, XuX. Plasmonics, 2012, 7: 603
CrossRef Google scholar
[12]
ZhuL, HuangY, YarivA. Optics Express, 2005, 13: 9916
CrossRef Google scholar
[13]
JeongY, YangB, LeeB, SeoH S, ChoiS, OhK. IEEE Photonics Technology Letters, 2000, 12: 519
CrossRef Google scholar
[14]
GrilletC, DomachukP, Ta’EedV, MägiE, BolgerJ, EggletonB, RoddL, Cooper-WhiteJ. Optics Express, 2004, 12: 5440
CrossRef Google scholar
[15]
LevyU, CampbellK, GroismanA, MookherjeaS, FainmanY. Applied Physics Letters, 2006, 88: 111107
CrossRef Google scholar
[16]
AbediK. Optoelectronics Letters, 2013, 9: 185
CrossRef Google scholar
[17]
HusbandB, BuM, EvansA G R, MelvinT. Journal of Micromechanics and Microengineering, 2004, 14: S64
CrossRef Google scholar
[18]
UngerMA, ChouH P, ThorsenT, SchererA, QuakeS R. Science, 2000, 288: 113
CrossRef Google scholar
[19]
KerbageC, EggletonB. Optical Fiber Technology, 2004, 10: 133
CrossRef Google scholar
[20]
KaleemM, ZhangX, YangY-g, ZhuangY, HeJ-j. Optoelectronics Letters, 2013, 9: 358
CrossRef Google scholar
[21]
En-mingX, FeiW, Pei-liL. Optoelectronics Letters, 2013, 9: 97
CrossRef Google scholar
[22]
HabibMd A, DasS. Saeed Mahmud Ullah and Shahida RafiqueOptoelectronics Letters, 2013, 9: 18
CrossRef Google scholar
[23]
ManolatouC, KhanM, FanS, VilleneuveP R, HausH, JoannopoulosJ. IEEE Journal of Quantum Electronics, 1999, 35: 1322
CrossRef Google scholar
[24]
HuangQ, LiangR, ChenP, WangS, XuY. Journal of the Optical Society of America B, 2011, 28: 1851
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61275059).

Accesses

Citations

Detail

Sections
Recommended

/