Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities

Ming-jia He , Rui-sheng Liang , Yu-ruo Wang , Zhe Yu , Liangbing Luo , Wen-hao Mo , Teng-long Li

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 12 -15.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 12 -15. DOI: 10.1007/s11801-014-3186-8
Article

Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities

Author information +
History +
PDF

Abstract

A novel method is presented to enhance the resonant transmission contrast ratio in metal-insulator-metal (MIM) side-coupled-cavity waveguide. The finite difference time domain (FDTD) method is used to simulate and study the optical properties of the filter based on double side-coupled cavities structure with optofluidics pump system (OPS). This system provides a flexible way to change wavelength in the optical filter. In the numerical simulation, the resonant wavelengths from 1000 nm to 1550 nm are analyzed. We find that the double side-coupled cavities structure with OPS has higher on-resonance transmittance and better wavelength selectivity than the single side-coupled cavity structure with OPS.

Keywords

Effective Refractive Index / Resonance Wavelength / Finite Difference Time Domain / Optic Express / Resonant Wavelength

Cite this article

Download citation ▾
Ming-jia He, Rui-sheng Liang, Yu-ruo Wang, Zhe Yu, Liangbing Luo, Wen-hao Mo, Teng-long Li. Integrated tunable optofluidics filter based on the plasmonic structure with double side-coupled cavities. Optoelectronics Letters, 2014, 10(1): 12-15 DOI:10.1007/s11801-014-3186-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BarnesW L, DereuxA, EbbesenT W. Nature, 2003, 424: 824

[2]

VeronisG, FanS. Applied Physics Letters, 2005, 87: 131102

[3]

ChenP, LiangR, HuangQ, YuZ, XuX. Optics Express, 2011, 19: 7633

[4]

EggletonB J, AhujaA, WestbrookP, RogersJ, KuoP, NielsenT, MikkelsenB. Journal of Lightwave Technology, 2000, 18: 1418

[5]

GaoH, ShiH, WangC, DuC, LuoX, DengQ, LvY, LinX, YaoH. Optics Express, 2005, 13: 10795

[6]

LeeT W, GrayS K. Optics Express, 2005, 13: 9652

[7]

ChenP, LiangR, HuangQ, XuY. Optics Communications, 2011, 284: 4795

[8]

WangB, WangG P. Applied Physics Letters, 2005, 87: 013107

[9]

HosseiniA, MassoudY. Optics Express, 2006, 14: 11318

[10]

BozhevolnyiS I, VolkovV S, DevauxE, LaluetJ Y, EbbesenT W. Nature, 2006, 440: 508

[11]

YuZ, LiangR, ChenP, HuangQ, HuangT, XuX. Plasmonics, 2012, 7: 603

[12]

ZhuL, HuangY, YarivA. Optics Express, 2005, 13: 9916

[13]

JeongY, YangB, LeeB, SeoH S, ChoiS, OhK. IEEE Photonics Technology Letters, 2000, 12: 519

[14]

GrilletC, DomachukP, Ta’EedV, MägiE, BolgerJ, EggletonB, RoddL, Cooper-WhiteJ. Optics Express, 2004, 12: 5440

[15]

LevyU, CampbellK, GroismanA, MookherjeaS, FainmanY. Applied Physics Letters, 2006, 88: 111107

[16]

AbediK. Optoelectronics Letters, 2013, 9: 185

[17]

HusbandB, BuM, EvansA G R, MelvinT. Journal of Micromechanics and Microengineering, 2004, 14: S64

[18]

UngerMA, ChouH P, ThorsenT, SchererA, QuakeS R. Science, 2000, 288: 113

[19]

KerbageC, EggletonB. Optical Fiber Technology, 2004, 10: 133

[20]

KaleemM, ZhangX, YangY-g, ZhuangY, HeJ-j. Optoelectronics Letters, 2013, 9: 358

[21]

En-mingX, FeiW, Pei-liL. Optoelectronics Letters, 2013, 9: 97

[22]

HabibMd A, DasS. Saeed Mahmud Ullah and Shahida RafiqueOptoelectronics Letters, 2013, 9: 18

[23]

ManolatouC, KhanM, FanS, VilleneuveP R, HausH, JoannopoulosJ. IEEE Journal of Quantum Electronics, 1999, 35: 1322

[24]

HuangQ, LiangR, ChenP, WangS, XuY. Journal of the Optical Society of America B, 2011, 28: 1851

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/