The photoresponse and photoconductivity of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters

Peng-hui Xiong , Ying Xiong , Xiang-yu Chen , Shan Chen , Shuang-yue Hou , Xiao-bo Zhang , Gang Liu , Yang-chao Tian

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 47 -50.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 47 -50. DOI: 10.1007/s11801-014-3181-0
Article

The photoresponse and photoconductivity of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters

Author information +
History +
PDF

Abstract

The photoresponse and photoconductivity properties of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters are successfully studied by the microfabrication technologies. According to the ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectroscopic study, a highly intense absorption is observed in the UV and visible light regions, which indicates probable applications in photoelectric devices. Furthermore, a large photocurrent is measured under the illumination of white light in nitrogen (N2) atmosphere. The micron-sized C60 whiskers and the sub-millimeter-sized C60 clusters have different photoresponse curves under the same condition of measurement. A quick transformation of photoelectric response is detected in parallel multi-arranged micron-sized C60 whiskers, but the recovery of the photocurrent of self-assembly sub-millimeter-sized C60 clusters is much slower.

Keywords

Fullerene / Positive Photoresist / Hexagon Cross Section / Photoconductivity Property / Photoelectric Response

Cite this article

Download citation ▾
Peng-hui Xiong, Ying Xiong, Xiang-yu Chen, Shan Chen, Shuang-yue Hou, Xiao-bo Zhang, Gang Liu, Yang-chao Tian. The photoresponse and photoconductivity of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters. Optoelectronics Letters, 2014, 10(1): 47-50 DOI:10.1007/s11801-014-3181-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KrotoH W, HeathJ R, ObrienS C, CurlR F, SmalleyR E. Nature, 1985, 318: 162

[2]

MinatoJ, MiyamwaK. Diamond and Related Materials, 2006, 15: 1151

[3]

OchiaiY, OgawaK, AokiN, BirdJ P. Journal of Physics: Conference Series, 2009, 159: 012004

[4]

QuY T, YuW W, LiangS C, LiS X, ZhaoJ, PiaoG Z. Journal of Nanomaterials, 2011, 2011: 69

[5]

WakaharaT, MiyazawaK, NemotoY, ItoO. Carbon, 2011, 49: 4644

[6]

IijimaS. Nature, 1991, 354: 56

[7]

ZhangJ, ChenY-L. Journal of Optoelectronics·Laser, 2012, 23: 460

[8]

LiC-S, YaoJ, ZhangC-x. Journal of Optoelectronics·Laser, 2012, 23: 1087

[9]

XingY J, JingG Y, XuJ, YuD P, LiuH B, LiY L. Appl. Phys. Lett., 2005, 87: 263117

[10]

ZhangY, LiuW, JiangL, FanL Z, WangC R, HuW P, ZhongH Z, LiY F, YangS H. Journal of Materials Chemistry, 2010, 20: 953

[11]

XuY, GuoJ, WeiT, ChenX, YangQ, YangS. Nanoscale, 2013, 5: 1993

[12]

MinatoJ, MiyazawaK. Carbon, 2005, 43: 2837

[13]

LarssonM, Kjelstrup-HansenJ, LucyszynS. ECS Transactions, 2007, 2: 27

[14]

JinY Z, CurryR J, SloanJ, HattonR A, ChongL C, BlanchardN, StolojanV, KrotoH W, SilvaS R P. Journal of Materials Chemistry, 2006, 16: 3715

[15]

LarsenC, BarzegarH R, NitzeF, WagbergT, EdmanL. Nanotechnology, 2012, 23: 344015

[16]

ZhangY, IchihashiT, LandreeE, NiheyF, IijimaS. Science, 1999, 285: 1719

[17]

LiJ Q, ZhangQ. International Journal of Nanoscience, 2006, 5: 401

[18]

SlotE, HolstM A, van der ZantH S, Zaitsev-ZotovS V. Physical Review Letters, 2004, 93: 176602

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/