The photoresponse and photoconductivity of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters

Peng-hui Xiong, Ying Xiong, Xiang-yu Chen, Shan Chen, Shuang-yue Hou, Xiao-bo Zhang, Gang Liu, Yang-chao Tian

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 47-50.

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 47-50. DOI: 10.1007/s11801-014-3181-0
Article

The photoresponse and photoconductivity of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters

Author information +
History +

Abstract

The photoresponse and photoconductivity properties of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters are successfully studied by the microfabrication technologies. According to the ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectroscopic study, a highly intense absorption is observed in the UV and visible light regions, which indicates probable applications in photoelectric devices. Furthermore, a large photocurrent is measured under the illumination of white light in nitrogen (N2) atmosphere. The micron-sized C60 whiskers and the sub-millimeter-sized C60 clusters have different photoresponse curves under the same condition of measurement. A quick transformation of photoelectric response is detected in parallel multi-arranged micron-sized C60 whiskers, but the recovery of the photocurrent of self-assembly sub-millimeter-sized C60 clusters is much slower.

Keywords

Fullerene / Positive Photoresist / Hexagon Cross Section / Photoconductivity Property / Photoelectric Response

Cite this article

Download citation ▾
Peng-hui Xiong, Ying Xiong, Xiang-yu Chen, Shan Chen, Shuang-yue Hou, Xiao-bo Zhang, Gang Liu, Yang-chao Tian. The photoresponse and photoconductivity of micron-sized C60 whiskers and sub-millimeter-sized C60 clusters. Optoelectronics Letters, 2014, 10(1): 47‒50 https://doi.org/10.1007/s11801-014-3181-0

References

[1]
KrotoH W, HeathJ R, ObrienS C, CurlR F, SmalleyR E. Nature, 1985, 318: 162
CrossRef Google scholar
[2]
MinatoJ, MiyamwaK. Diamond and Related Materials, 2006, 15: 1151
CrossRef Google scholar
[3]
OchiaiY, OgawaK, AokiN, BirdJ P. Journal of Physics: Conference Series, 2009, 159: 012004
[4]
QuY T, YuW W, LiangS C, LiS X, ZhaoJ, PiaoG Z. Journal of Nanomaterials, 2011, 2011: 69
[5]
WakaharaT, MiyazawaK, NemotoY, ItoO. Carbon, 2011, 49: 4644
CrossRef Google scholar
[6]
IijimaS. Nature, 1991, 354: 56
CrossRef Google scholar
[7]
ZhangJ, ChenY-L. Journal of Optoelectronics·Laser, 2012, 23: 460
[8]
LiC-S, YaoJ, ZhangC-x. Journal of Optoelectronics·Laser, 2012, 23: 1087
[9]
XingY J, JingG Y, XuJ, YuD P, LiuH B, LiY L. Appl. Phys. Lett., 2005, 87: 263117
CrossRef Google scholar
[10]
ZhangY, LiuW, JiangL, FanL Z, WangC R, HuW P, ZhongH Z, LiY F, YangS H. Journal of Materials Chemistry, 2010, 20: 953
CrossRef Google scholar
[11]
XuY, GuoJ, WeiT, ChenX, YangQ, YangS. Nanoscale, 2013, 5: 1993
CrossRef Google scholar
[12]
MinatoJ, MiyazawaK. Carbon, 2005, 43: 2837
CrossRef Google scholar
[13]
LarssonM, Kjelstrup-HansenJ, LucyszynS. ECS Transactions, 2007, 2: 27
[14]
JinY Z, CurryR J, SloanJ, HattonR A, ChongL C, BlanchardN, StolojanV, KrotoH W, SilvaS R P. Journal of Materials Chemistry, 2006, 16: 3715
CrossRef Google scholar
[15]
LarsenC, BarzegarH R, NitzeF, WagbergT, EdmanL. Nanotechnology, 2012, 23: 344015
CrossRef Google scholar
[16]
ZhangY, IchihashiT, LandreeE, NiheyF, IijimaS. Science, 1999, 285: 1719
CrossRef Google scholar
[17]
LiJ Q, ZhangQ. International Journal of Nanoscience, 2006, 5: 401
CrossRef Google scholar
[18]
SlotE, HolstM A, van der ZantH S, Zaitsev-ZotovS V. Physical Review Letters, 2004, 93: 176602
CrossRef Google scholar

This work has been supported by the Major State Basic Research Development Program of China (No.2012CB825804).

Accesses

Citations

Detail

Sections
Recommended

/