248 nm imaging photolithography assisted by surface plasmon polariton interference

Man-man Tian , Jia-jia Mi , Jian-ping Shi , Nan-nan Wei , Ling-li Zhan , Wan-xia Huang , Ze-wen Zuo , Chang-tao Wang , Xian-gang Luo

Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 24 -26.

PDF
Optoelectronics Letters ›› 2014, Vol. 10 ›› Issue (1) : 24 -26. DOI: 10.1007/s11801-014-3172-1
Article

248 nm imaging photolithography assisted by surface plasmon polariton interference

Author information +
History +
PDF

Abstract

A new photolithography technique for 248 nm based on the interference of surface plasmon waves is proposed and demonstrated by using computer simulations. The basic structure consists of surface plasmon polariton (SPP) interference mask and multi-layer film superlens. Using the amplification effect of superlens on evanescent wave, the near field SPP interference pattern is imaged to the far field, and then is exposed on photo resist (PR). The simulation results based on finite difference time domain (FDTD) method show that the full width at half maximum (FWHM) of the interference pattern is about 19 nm when the p-polarization light from 248 nm source is vertically incident to the structure. Meanwhile, the focal depth is 150 nm for negative PR and 60 nm for positive PR, which is much greater than that in usual SPP photolithography.

Keywords

Interference Pattern / Focal Depth / Surface Plasmon Polariton / Evanescent Wave / Finite Difference Time Domain

Cite this article

Download citation ▾
Man-man Tian, Jia-jia Mi, Jian-ping Shi, Nan-nan Wei, Ling-li Zhan, Wan-xia Huang, Ze-wen Zuo, Chang-tao Wang, Xian-gang Luo. 248 nm imaging photolithography assisted by surface plasmon polariton interference. Optoelectronics Letters, 2014, 10(1): 24-26 DOI:10.1007/s11801-014-3172-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuZ W, WeiQ H, ZhangX. Nano Letters, 2005, 5: 957

[2]

XuT, ZhaoY, MaJ, WangC, CuiJ, DuC, LuoX. Optics Express, 2008, 16: 13579

[3]

MurukeshanV M, SreekanthK V. Optics Lettters, 2009, 34: 845

[4]

LiH-j, ZhangX-d, WangM-r, LinW-k, ShiW-h, ZhongF, ZhangB-s. Optoelectronics Letters, 2010, 6: 211

[5]

OzbayE. Science, 2006, 311: 189

[6]

WangC, QinW-j, MaC-y, ZhangQ, YangL-y, YinS-g. Optoelectronics Letters, 2012, 8: 401

[7]

WangB, ChewA B, TengJ, SiG, DannerA J. Applied Physics Letters, 2011, 99: 151106

[8]

HeM, ZhangZ, ShiS, DuJ, LiX, LiS, MaW. Optics Express, 2010, 18: 15975

[9]

SreekanthK V, MurukeshanV M. Journal of Optical Society of America A, 2010, 27: 95

[10]

LiY, LiuF, XiaoL, CuiK, FengX, ZhangW, HuangY. Applied Physics Letters, 2013, 102: 063113

[11]

XiongY, LiuZ, SunC, ZhangX. Nano Letters, 2007, 7: 3360

[12]

XuH-X, WangG-M, QiM-Q, LiL-M, CuiT-J. Advanced Optical Materials, 2013, 1: 494

[13]

M. Xiao and C. T. Chan, Beating Diffraction Limit in an Absorptive Superlens, APS March Meeting, Bulletin of the American Physical Society 58 (2013).

[14]

J. Dong, J. Liu, X. Zhao, P. Liu, J. Liu, G. Kang, J. Xie and Y. Wang, A Super Lens System for Demagnification Imaging Beyond the Diffraction Limit, Plasmonics 8 (2013).

[15]

ShaoD B, ChenS C. Optics Express, 2005, 13: 6964

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/